A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit ar...A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit arrays.The gas-sensing units can actively convert the mechanical energy of gas flow into a triboelectric current.The output current signal depends on the species and concentrations of the target chemical gases(CO,NH3,NO)in the gas flow,and thus can be used as a sensing signal.The device consists of seven gas-sensing units with different Ppy derivatives.As the different sensing units respond to the gases in different ways,the device can differentiate between gas species.The working mechanism is attributed to the coupling effect between the triboelectric effect of PDMS/Ppy and the gas-sensing properties of Ppy.The device can be installed in the tailpipe of an automobile,and can thus analyze the exhaust gas in real time without the need for any external electrical power.The results of the present study spur a new research direction for the development of automotive exhaust gas monitoring systems,thus playing an important role in the detection of air pollution.展开更多
A new method of measuring gas pressure in vacuum insulation panels(VIPs)is reported in this study,which provides a fast and efficient quality control option of production.Although there are different methods of measur...A new method of measuring gas pressure in vacuum insulation panels(VIPs)is reported in this study,which provides a fast and efficient quality control option of production.Although there are different methods of measuring gas pressure for VIPs,connecting an internal measurement gauge to external data acquisition units is problematic.The thin high barrier film covering the panel’s core usually prevents external electrical wires or mechanical devices being connected to the inside of the VIPs.To solve this problem,a micro capacitive pressure sensor with 0 to 250 Pa detection range is developed to detect the vacuum pressure.The sensor has high linearity and a sensitivity of 10 mV/Pa.Moreover,through the communication mode study,an ultrasound communications system for VIPs is designed.It shows from operation that this system is stable and reliable,and quick for communication speed.This new method enables the quality detection of VIPs to be completed within 1 second.The minimum detectable pressure of VIPs is below 1 Pa,and the measurement error can be controlled around 5%.展开更多
基金supported by the National Natural Science Foundation of China (11674048)the Fundamental Research Funds for the Central Universities (N170505001 and N160502002)the Program for Shenyang Youth Science and Technology Innovation Talents (RC170269)
文摘A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit arrays.The gas-sensing units can actively convert the mechanical energy of gas flow into a triboelectric current.The output current signal depends on the species and concentrations of the target chemical gases(CO,NH3,NO)in the gas flow,and thus can be used as a sensing signal.The device consists of seven gas-sensing units with different Ppy derivatives.As the different sensing units respond to the gases in different ways,the device can differentiate between gas species.The working mechanism is attributed to the coupling effect between the triboelectric effect of PDMS/Ppy and the gas-sensing properties of Ppy.The device can be installed in the tailpipe of an automobile,and can thus analyze the exhaust gas in real time without the need for any external electrical power.The results of the present study spur a new research direction for the development of automotive exhaust gas monitoring systems,thus playing an important role in the detection of air pollution.
基金supported by the Science and Technology Projects of Fujian Province of China(Grant No.2010H6025)Science and Technology Projects of Xiamen City of China(Grant No.3502Z20103012)
文摘A new method of measuring gas pressure in vacuum insulation panels(VIPs)is reported in this study,which provides a fast and efficient quality control option of production.Although there are different methods of measuring gas pressure for VIPs,connecting an internal measurement gauge to external data acquisition units is problematic.The thin high barrier film covering the panel’s core usually prevents external electrical wires or mechanical devices being connected to the inside of the VIPs.To solve this problem,a micro capacitive pressure sensor with 0 to 250 Pa detection range is developed to detect the vacuum pressure.The sensor has high linearity and a sensitivity of 10 mV/Pa.Moreover,through the communication mode study,an ultrasound communications system for VIPs is designed.It shows from operation that this system is stable and reliable,and quick for communication speed.This new method enables the quality detection of VIPs to be completed within 1 second.The minimum detectable pressure of VIPs is below 1 Pa,and the measurement error can be controlled around 5%.