A new silicon beam resonator design for a novel gas sensor based on simultaneous conductivity and mass change measurement is investigated. High selectivity and sensitivity in gas detection can be obtained by measuring...A new silicon beam resonator design for a novel gas sensor based on simultaneous conductivity and mass change measurement is investigated. High selectivity and sensitivity in gas detection can be obtained by measuring the charge-to-mass ratio of gas molecules. Structures of silicon beam resonators are designed, simulated, and optimized. This gas sensor is fabricated using sacrificial layer microelectronmechanical system technology, and the resonant frequency of the microbeam is measured.展开更多
The mass transfer between non-aqueous phase liquid(NAPL) phase and soil gas phase in soil vapor extraction(SVE) process has been investigated by one-dimensional venting experiments. During quasi-steady volatilization ...The mass transfer between non-aqueous phase liquid(NAPL) phase and soil gas phase in soil vapor extraction(SVE) process has been investigated by one-dimensional venting experiments. During quasi-steady volatilization of three single-component NAPLs in a sandy soil, constant initial lumped mass transfer coefficient (λgN,0) canbe obtained if the relative saturation (ξ) between NAPL phase and gas phase is higher than a critical value (ξc), andthe lumped mass transfer coefficient decreases with ξ when ξ<ξc. It is also shown that the lumped mass transfercoefficient can be increased by blending porous micro-particles into the sandy soil because of the increasing of theinterfacial area.展开更多
With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedo...With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within +30%.展开更多
Absorption of gaseous species into stationary droplets is a fundamental interest of mass transfer between liquid droplets and ambient gas, which plays a key role in atmospheric environment control and many industrial ...Absorption of gaseous species into stationary droplets is a fundamental interest of mass transfer between liquid droplets and ambient gas, which plays a key role in atmospheric environment control and many industrial applications. In this paper, two different considerations including equilibrium and non-equilibrium relations at the interface are used to analyze and predict the absorption time for a physical absorption at a relatively low solubility of gas. For the equilibrium pattern, in the beginning period of absorption, the mass transfer rate is considerably rapid and afterward becomes slower and slower and finally comes to almost zero as the droplet concentration closes to the saturated value. Differently, when the non-equilibrium model is adopted, the interfacial concentration increases gradually with the bulk concentration of liquid droplet, and the absorption rate mildly decelerates with the increase of bulk one throughout the process, which leads to a longer absorption time. Based on the diffusion equation of species, the concentration distribution within the droplet at different times is computed. A solution for CO2 absorption into a small water droplet is given.展开更多
Based on the method of molecular thermodynamics, the mass transfer mechanism at gas-liquid interface is studied theoretically, and a new mathematical model is proposed. Using laser holographic interference technique, ...Based on the method of molecular thermodynamics, the mass transfer mechanism at gas-liquid interface is studied theoretically, and a new mathematical model is proposed. Using laser holographic interference technique, the hydrodynamics and mass transfer characteristics of CO2 absorption are measured. It is shown that the calculated results are in good agreement with the experimental data.展开更多
A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. ...A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. Instead of a global grid, the composite overlapping grid is adopted, which simplifies the setup and solution of the three-dimensional model equations. It is found that dispersed particle hold-up, particle size, liquid-solid partition coefficient of transported component, characteristic contact time, and the shortest distance between particles and gas-liquid interface have major influence on absorption enhancement factor. The particle-particle interaction on gas absorption and the lateral diffusion of transported component in liquid film were studied with the multi-particle simulation. The proposed model predicted the experimental data from the literature reasonably well.展开更多
Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) we...Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.展开更多
Predispersed solvent extraction (PDSE) is a new method for separating solutes from aqueous solution by solvent extraction and one which has shown promise for extraction from extremely dilute solution very efficient an...Predispersed solvent extraction (PDSE) is a new method for separating solutes from aqueous solution by solvent extraction and one which has shown promise for extraction from extremely dilute solution very efficient and very quick. The use of colloidal liquid aphrons in predispersed solvent extraction may ameliorate the problems such as emulsion formation, reduction of interfacial mass transfer and low interfacial mass transfer areas in solvent extraction process. In present paper, colloidal liquid aphrons are successfully generated using kerosene as a solvent, tributyl phosphate(TBP) as an extractant, sodium dodecyl benzene sulphate(SDBS) as surfactant in aqueous phase and Tween-80 in oil phase. Extraction of phenol from dilute solution was studied by using colloidal liquid aphrons and colloidal gas aphrons in a semi-batch extraction column. It has been found that the PDSE process is more suitable for extraction of dilute solutions. It has also been discovered that the PDSE process has a great advantage over traditional single-stage extraction process.展开更多
An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are h...An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are hence deduced. Using the real part of shear modulus, the polymer can be classified into three types: glassy film, glassy-rubbery film and rubbery film, Experimental results show that the attenuation response is in better consistence with the simulation than in Martin's theory, but the velocity response does not accord with the calculation exactly. Maybe it is influenced by the experimental methods and environment. In addition, simulations of gas sorption for polymer films are performed. As for glassy film, the SAW sensor response increases with increasing fihn thickness, and the relationship between the sensor response and the concentration of gas is pretty linear, while as for glassy-rubbery flint and rubbery film, the relationship between the sensor sensitivity anti concentration of gas is very complicated. The ultimately calculated results indicate that the relationship between the sensor response and frequency is not always linear due to the viscoelastic prooerties of the polymer.展开更多
abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactor...abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactors under elevated temperature and elevated pressure. Meanwhile, gas-holdup and gas-liquid interfacial area a were obtained. The effects of temperature, pressure, superficial gas velocity and solid concentration on the mass transfer coeffi-cient were discussed. Experimental results show that the gas-liquid volumetric mass transfer coefficient kLa and interfacial area a increased with the increase of pressure, temperature, and superficial gas velocity, and decreased with the slurry concentration. The mass transfer coefficient kL increased with increasing superficial gas velocity and temperature and decreased with higher slurry concentration, while it changed slightly with pressure. Ac-cording to analysis of experimental data, an empirical correlation is obtained to calculate the values of kLa for H2 (CO, CO2) in the gas-paraffin-quartz system in a bubble column under elevated temperature and elevated pressure.展开更多
With the aim to find an absorbing liquid suitable for the gas cleaning system in the application of gasification unit in a remote area, three types of oil were tested using a bubble column and a wetted wall column. Ai...With the aim to find an absorbing liquid suitable for the gas cleaning system in the application of gasification unit in a remote area, three types of oil were tested using a bubble column and a wetted wall column. Air streams containing toluene vapour with flowrates of 13.6 mL-min1 or 27.6 mL.min^-1 were bubbled through a 50 mL static oil in a glass tube at a temperature of 30 ℃ or 60 ℃. In experiments using the wetted wall column, air streams containing toluene were contacted with a falling thin film ofoil on the outer wall of a column with a diameter of 6.4 cm and two different contacting heights of 60 cm or 80 cm. Toluene concentrations in the air stream were adjusted in the range of 700-3000 ppm corresponding to a typical tars concentration in the producer gas. The phase equilibrium of toluene was represented as values of 1/tl of 326, 220 and 182 respectively for lubrication oil, palm oil and sunflower oil (H is Henry's constant with the toluene concentrations in g.L^-1 for liquid phase and g.Nm^-3 for gas phase). From experiments using the bubble column, it was found that the overall mass transfer coefficient (Kc, a) was in the order of 10.3 cm3-min^-1 and the overall liquid phase mass transfer coefficient (KLa)was about 10.3 cm3.min^-1. Although lubrication oil had a slightly better absorption capacity than the other two tested oils, it had a lower mass trasfer coefficient than that of palm oil. All three proposed oils had a much better absorption capacity and absorption rate than that of water used conventionally as a scrubbing liquid in a small biomass gasification plant.展开更多
文摘A new silicon beam resonator design for a novel gas sensor based on simultaneous conductivity and mass change measurement is investigated. High selectivity and sensitivity in gas detection can be obtained by measuring the charge-to-mass ratio of gas molecules. Structures of silicon beam resonators are designed, simulated, and optimized. This gas sensor is fabricated using sacrificial layer microelectronmechanical system technology, and the resonant frequency of the microbeam is measured.
基金Supported by the National Natural Science Foundation of China (No. 20276048).
文摘The mass transfer between non-aqueous phase liquid(NAPL) phase and soil gas phase in soil vapor extraction(SVE) process has been investigated by one-dimensional venting experiments. During quasi-steady volatilization of three single-component NAPLs in a sandy soil, constant initial lumped mass transfer coefficient (λgN,0) canbe obtained if the relative saturation (ξ) between NAPL phase and gas phase is higher than a critical value (ξc), andthe lumped mass transfer coefficient decreases with ξ when ξ<ξc. It is also shown that the lumped mass transfercoefficient can be increased by blending porous micro-particles into the sandy soil because of the increasing of theinterfacial area.
基金Supported by the State Key Development Program for Basic Research of China (2006CB202503)
文摘With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within +30%.
基金Supported by the National Natural Science Foundation of China (No. 20176036).
文摘Absorption of gaseous species into stationary droplets is a fundamental interest of mass transfer between liquid droplets and ambient gas, which plays a key role in atmospheric environment control and many industrial applications. In this paper, two different considerations including equilibrium and non-equilibrium relations at the interface are used to analyze and predict the absorption time for a physical absorption at a relatively low solubility of gas. For the equilibrium pattern, in the beginning period of absorption, the mass transfer rate is considerably rapid and afterward becomes slower and slower and finally comes to almost zero as the droplet concentration closes to the saturated value. Differently, when the non-equilibrium model is adopted, the interfacial concentration increases gradually with the bulk concentration of liquid droplet, and the absorption rate mildly decelerates with the increase of bulk one throughout the process, which leads to a longer absorption time. Based on the diffusion equation of species, the concentration distribution within the droplet at different times is computed. A solution for CO2 absorption into a small water droplet is given.
基金Supported by the National Natural Science Foundation of China(No.20176036).
文摘Based on the method of molecular thermodynamics, the mass transfer mechanism at gas-liquid interface is studied theoretically, and a new mathematical model is proposed. Using laser holographic interference technique, the hydrodynamics and mass transfer characteristics of CO2 absorption are measured. It is shown that the calculated results are in good agreement with the experimental data.
基金Supported by the National Natural Science Foundation of China (No. 20136010).
文摘A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. Instead of a global grid, the composite overlapping grid is adopted, which simplifies the setup and solution of the three-dimensional model equations. It is found that dispersed particle hold-up, particle size, liquid-solid partition coefficient of transported component, characteristic contact time, and the shortest distance between particles and gas-liquid interface have major influence on absorption enhancement factor. The particle-particle interaction on gas absorption and the lateral diffusion of transported component in liquid film were studied with the multi-particle simulation. The proposed model predicted the experimental data from the literature reasonably well.
基金Supported by the National Natural Science Foundation of China (20776086)
文摘Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.
基金Supported by the National Natural Science Foundation of China(No.29676021 and No.29836130)
文摘Predispersed solvent extraction (PDSE) is a new method for separating solutes from aqueous solution by solvent extraction and one which has shown promise for extraction from extremely dilute solution very efficient and very quick. The use of colloidal liquid aphrons in predispersed solvent extraction may ameliorate the problems such as emulsion formation, reduction of interfacial mass transfer and low interfacial mass transfer areas in solvent extraction process. In present paper, colloidal liquid aphrons are successfully generated using kerosene as a solvent, tributyl phosphate(TBP) as an extractant, sodium dodecyl benzene sulphate(SDBS) as surfactant in aqueous phase and Tween-80 in oil phase. Extraction of phenol from dilute solution was studied by using colloidal liquid aphrons and colloidal gas aphrons in a semi-batch extraction column. It has been found that the PDSE process is more suitable for extraction of dilute solutions. It has also been discovered that the PDSE process has a great advantage over traditional single-stage extraction process.
基金This work was supported by National Natural Science Foundation (No. 10374100).
文摘An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are hence deduced. Using the real part of shear modulus, the polymer can be classified into three types: glassy film, glassy-rubbery film and rubbery film, Experimental results show that the attenuation response is in better consistence with the simulation than in Martin's theory, but the velocity response does not accord with the calculation exactly. Maybe it is influenced by the experimental methods and environment. In addition, simulations of gas sorption for polymer films are performed. As for glassy film, the SAW sensor response increases with increasing fihn thickness, and the relationship between the sensor response and the concentration of gas is pretty linear, while as for glassy-rubbery flint and rubbery film, the relationship between the sensor sensitivity anti concentration of gas is very complicated. The ultimately calculated results indicate that the relationship between the sensor response and frequency is not always linear due to the viscoelastic prooerties of the polymer.
基金Supported by the National Natural Science Foundation of China(20776018)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20130325)
文摘abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactors under elevated temperature and elevated pressure. Meanwhile, gas-holdup and gas-liquid interfacial area a were obtained. The effects of temperature, pressure, superficial gas velocity and solid concentration on the mass transfer coeffi-cient were discussed. Experimental results show that the gas-liquid volumetric mass transfer coefficient kLa and interfacial area a increased with the increase of pressure, temperature, and superficial gas velocity, and decreased with the slurry concentration. The mass transfer coefficient kL increased with increasing superficial gas velocity and temperature and decreased with higher slurry concentration, while it changed slightly with pressure. Ac-cording to analysis of experimental data, an empirical correlation is obtained to calculate the values of kLa for H2 (CO, CO2) in the gas-paraffin-quartz system in a bubble column under elevated temperature and elevated pressure.
文摘With the aim to find an absorbing liquid suitable for the gas cleaning system in the application of gasification unit in a remote area, three types of oil were tested using a bubble column and a wetted wall column. Air streams containing toluene vapour with flowrates of 13.6 mL-min1 or 27.6 mL.min^-1 were bubbled through a 50 mL static oil in a glass tube at a temperature of 30 ℃ or 60 ℃. In experiments using the wetted wall column, air streams containing toluene were contacted with a falling thin film ofoil on the outer wall of a column with a diameter of 6.4 cm and two different contacting heights of 60 cm or 80 cm. Toluene concentrations in the air stream were adjusted in the range of 700-3000 ppm corresponding to a typical tars concentration in the producer gas. The phase equilibrium of toluene was represented as values of 1/tl of 326, 220 and 182 respectively for lubrication oil, palm oil and sunflower oil (H is Henry's constant with the toluene concentrations in g.L^-1 for liquid phase and g.Nm^-3 for gas phase). From experiments using the bubble column, it was found that the overall mass transfer coefficient (Kc, a) was in the order of 10.3 cm3-min^-1 and the overall liquid phase mass transfer coefficient (KLa)was about 10.3 cm3.min^-1. Although lubrication oil had a slightly better absorption capacity than the other two tested oils, it had a lower mass trasfer coefficient than that of palm oil. All three proposed oils had a much better absorption capacity and absorption rate than that of water used conventionally as a scrubbing liquid in a small biomass gasification plant.