Spacecrafts free of all but gravitational forces are important in precision navigation,gravity field measurement and basic scientific research.The Inner-formation Flying System,one kind of spacecrafts free of all but ...Spacecrafts free of all but gravitational forces are important in precision navigation,gravity field measurement and basic scientific research.The Inner-formation Flying System,one kind of spacecrafts free of all but gravitational forces,is used for gravitational field measurement with high precision.Restraining the interfering factors on the inner-satellite is one of the keys to gravitational field measurement.Radiometer effect and residual gas damping are both interfering forces on the inner-satellite caused by gas molecules.By analyzing the mechanism of the two forces,a coupled model for radiometer effect and residual gas damping was established,which contained the coupling term and reflected the actual force of gas molecules on the inner-satellite.The simulation results showed the coupling property of radiometer effect and residual gas damping:The actual force of gas molecules is directly proportional to the average pressure in the cavity and the largest cross-sectional area of the inner-satellite,but is inversely proportional to the square root of the average temperature in the cavity.展开更多
Our objective is a better understanding of the role of physical properties of real fluids in the thermodynamics of cavitation in impure water. An extension to the classical homogenous nucleation theory suitable for mi...Our objective is a better understanding of the role of physical properties of real fluids in the thermodynamics of cavitation in impure water. An extension to the classical homogenous nucleation theory suitable for mixtures is presented in attempt to address the discrepancy between the theoretical predictions and practical observations of cavitation rates in water at normal temperatures. The extension takes into account the non-equilibrium (dissipative) effects involved in nuclei formation through a substance dependent correction coefficient to be determined experimentally. The theory of thermodynamic fluctuations is applied to derive the work of formation of a bubble nucleus. The value of the correction coefficient is estimated using preliminary experimental data from a convergent-divergent nozzle. An application of the results to the numerical prediction of the cavitation zones in a radial-flow water pump is shown.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11002076)National Defence Pre-Research (Grant No. 51320010201)
文摘Spacecrafts free of all but gravitational forces are important in precision navigation,gravity field measurement and basic scientific research.The Inner-formation Flying System,one kind of spacecrafts free of all but gravitational forces,is used for gravitational field measurement with high precision.Restraining the interfering factors on the inner-satellite is one of the keys to gravitational field measurement.Radiometer effect and residual gas damping are both interfering forces on the inner-satellite caused by gas molecules.By analyzing the mechanism of the two forces,a coupled model for radiometer effect and residual gas damping was established,which contained the coupling term and reflected the actual force of gas molecules on the inner-satellite.The simulation results showed the coupling property of radiometer effect and residual gas damping:The actual force of gas molecules is directly proportional to the average pressure in the cavity and the largest cross-sectional area of the inner-satellite,but is inversely proportional to the square root of the average temperature in the cavity.
文摘Our objective is a better understanding of the role of physical properties of real fluids in the thermodynamics of cavitation in impure water. An extension to the classical homogenous nucleation theory suitable for mixtures is presented in attempt to address the discrepancy between the theoretical predictions and practical observations of cavitation rates in water at normal temperatures. The extension takes into account the non-equilibrium (dissipative) effects involved in nuclei formation through a substance dependent correction coefficient to be determined experimentally. The theory of thermodynamic fluctuations is applied to derive the work of formation of a bubble nucleus. The value of the correction coefficient is estimated using preliminary experimental data from a convergent-divergent nozzle. An application of the results to the numerical prediction of the cavitation zones in a radial-flow water pump is shown.