Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influ...Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influence of natural wind pressure to analyze the stope face differential pressure, gob air leakage field distribution and gas migration regularity theoretically. Established a two-dimensional physical model with one source and one doab, and applied computational fluid dynamics analysis software Fluent to do numerical simulation, analyzed and contrasted to the areas of gob air leakage on size and gas emission from gob to working face on strength when using the downlink ventilation and uplink ventilation. When applied downward ventilation in stope face, the air leakage field of gob nearly working face, and the air leakage intensity were smaller than uplink, this can effectively reduce the gas emission from gob to working face; when used downlink ventilation, the air leakage airflow carry the lower amount of gas to doab than uplink ventilation, and more easily to mix the gas, reduced the possibility of gas accumulation in upper comer and the stratified flows, it can provide protection to mine with safe and effective production.展开更多
In order to study the unsteady aerodynamics effects in railway tunnels,the 3D Reynolds average Navier-Stokes equations of a viscous compressible fluid are solved,and the two-equation k-ε model is used in the simulati...In order to study the unsteady aerodynamics effects in railway tunnels,the 3D Reynolds average Navier-Stokes equations of a viscous compressible fluid are solved,and the two-equation k-ε model is used in the simulation of turbulence,while the dynamic grid technique is employed for moving bodies.We focus on obtaining the changing tendencies of the aerodynamic force of the train and the aerodynamic pressures on the tunnel wall and train surface,and discovering the relationship between the velocity of the train and the intensity of the micro pressure wave at the tunnel exit.It is shown that the amplitudes of the pressure changes in the tunnel and on the train surface are both approximately proportional to the square of the train speed,so are the microwave and the drag of the train.展开更多
Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery compo- nents efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial in- fl...Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery compo- nents efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial in- flow turbine and a centrifugal compressor. The high rotational speed of such machines and the high exhaust gas temperature (only for the turbine) expose blades to really high stresses and therefore the aerodynamics design has to be coupled with the mechanical one through an integrated procedure. The described approach employs a fuUy 3D Reynolds Averaged Navier-Stokes (RANS) solver for the aerodynamics and an open source Finite Element Analysis (FEA) solver for the mechanical integrity assessment. Due to the high computational cost of both these two solvers, a meta model, such as an artificial neural network (ANN), is used to speed up the optimization design process. The interaction between two codes, the mesh genera- tion and the post processing of the results are achieved via in-house developed scripting modules. The obtained results are widely presented and discussed.展开更多
文摘Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influence of natural wind pressure to analyze the stope face differential pressure, gob air leakage field distribution and gas migration regularity theoretically. Established a two-dimensional physical model with one source and one doab, and applied computational fluid dynamics analysis software Fluent to do numerical simulation, analyzed and contrasted to the areas of gob air leakage on size and gas emission from gob to working face on strength when using the downlink ventilation and uplink ventilation. When applied downward ventilation in stope face, the air leakage field of gob nearly working face, and the air leakage intensity were smaller than uplink, this can effectively reduce the gas emission from gob to working face; when used downlink ventilation, the air leakage airflow carry the lower amount of gas to doab than uplink ventilation, and more easily to mix the gas, reduced the possibility of gas accumulation in upper comer and the stratified flows, it can provide protection to mine with safe and effective production.
基金Project(No.2009BAG12A01) supported by the National Key Technology R&D Program of China
文摘In order to study the unsteady aerodynamics effects in railway tunnels,the 3D Reynolds average Navier-Stokes equations of a viscous compressible fluid are solved,and the two-equation k-ε model is used in the simulation of turbulence,while the dynamic grid technique is employed for moving bodies.We focus on obtaining the changing tendencies of the aerodynamic force of the train and the aerodynamic pressures on the tunnel wall and train surface,and discovering the relationship between the velocity of the train and the intensity of the micro pressure wave at the tunnel exit.It is shown that the amplitudes of the pressure changes in the tunnel and on the train surface are both approximately proportional to the square of the train speed,so are the microwave and the drag of the train.
文摘Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery compo- nents efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial in- flow turbine and a centrifugal compressor. The high rotational speed of such machines and the high exhaust gas temperature (only for the turbine) expose blades to really high stresses and therefore the aerodynamics design has to be coupled with the mechanical one through an integrated procedure. The described approach employs a fuUy 3D Reynolds Averaged Navier-Stokes (RANS) solver for the aerodynamics and an open source Finite Element Analysis (FEA) solver for the mechanical integrity assessment. Due to the high computational cost of both these two solvers, a meta model, such as an artificial neural network (ANN), is used to speed up the optimization design process. The interaction between two codes, the mesh genera- tion and the post processing of the results are achieved via in-house developed scripting modules. The obtained results are widely presented and discussed.