New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In...New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In consideration of the large number of variables in the plant layout model, our new method can significantly reduce the number of variables with their own projection relationships. Also, as toxic gas dispersion is a usual incident in a chemical plant, a simple approach to describe the gas leakage is proposed, which can clearly represent the constraints of potential emission source and sitting facilities. For solving the plant layout model, an improved genetic algorithm (GA) based on infeasible solution fix technique is proposed, which improves the globe search ability of GA. The case study and experiment show that a better layout plan can be obtained with our method, and the safety factors such as gas dispersion and minimum distances can be well handled in the solution.展开更多
The main objective of this paper is to develop a novel technology for combined generation of electricity and cold by using energy potential of transmission line's high pressure gas. For this purpose, the reduction of...The main objective of this paper is to develop a novel technology for combined generation of electricity and cold by using energy potential of transmission line's high pressure gas. For this purpose, the reduction of high pressure of the gas in gas distribution station instead of useless expansion throttling process is suggested to realize by adiabatic expansion, which is executed in a gas expanding turbine. Herewith, the gas distribution station is turned into energy and cold generating plant. Simultaneous operation of energy and cold generating plant is described. A method and appropriate formulas for determination of design characteristics of considered plant are suggested. A new method for reveres order of calculation and design of the cold store based on the use of expanded cold gas as cooling agent is developed. Calculations and analysis prove high energy efficiency of suggested technology, the wide use of which will provide significant production of cheap electricity and cold and as well as reduction of fossil fuel consumption.展开更多
基金Supported by the National Natural Science Foundation of China (61074153, 61104131), and the Fundamental Research Funds for Central Universities of China (ZY1111, JD1104).
文摘New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In consideration of the large number of variables in the plant layout model, our new method can significantly reduce the number of variables with their own projection relationships. Also, as toxic gas dispersion is a usual incident in a chemical plant, a simple approach to describe the gas leakage is proposed, which can clearly represent the constraints of potential emission source and sitting facilities. For solving the plant layout model, an improved genetic algorithm (GA) based on infeasible solution fix technique is proposed, which improves the globe search ability of GA. The case study and experiment show that a better layout plan can be obtained with our method, and the safety factors such as gas dispersion and minimum distances can be well handled in the solution.
文摘The main objective of this paper is to develop a novel technology for combined generation of electricity and cold by using energy potential of transmission line's high pressure gas. For this purpose, the reduction of high pressure of the gas in gas distribution station instead of useless expansion throttling process is suggested to realize by adiabatic expansion, which is executed in a gas expanding turbine. Herewith, the gas distribution station is turned into energy and cold generating plant. Simultaneous operation of energy and cold generating plant is described. A method and appropriate formulas for determination of design characteristics of considered plant are suggested. A new method for reveres order of calculation and design of the cold store based on the use of expanded cold gas as cooling agent is developed. Calculations and analysis prove high energy efficiency of suggested technology, the wide use of which will provide significant production of cheap electricity and cold and as well as reduction of fossil fuel consumption.