A system for in vitro investigation of ultrasound contrast agent's enhancement effect is presented and evaluated. It includes the digital B-mode ultrasound scanner Belson3000A, the tissue-mimicking ultrasound phantom...A system for in vitro investigation of ultrasound contrast agent's enhancement effect is presented and evaluated. It includes the digital B-mode ultrasound scanner Belson3000A, the tissue-mimicking ultrasound phantoms and the software which is used for image quantitative analysis. The linear range, optimal settings and repeatability of the system are assessed and explored by scanning the ultrasound phantoms with different reflective intensities. The measurements are performed under an acoustic power from 4.8 to 12.3 mW, the scanner centre frequency is 3.5 MH and the gain setting is 50 dB. Both a self-made surfactant encapsulated microbubble and a commercial ultrasound contrast agent are scanned. The results show that the pixel intensity of ultrasonic images increases with the increase in the sound power, and for the stronger reflective phantoms of more particles, the increasing trend is much more evident. The system is optimal for evaluating the microbubble contrast agents' enhancement effects. It presents a simple, effective and real-time means for characterizing the enhancement ability of microbubbles.展开更多
This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly ...This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly and cheap technology, common in polymer processing and known as gas foaming. The central role played by ad hoc polymeric hollow micro- and nano-particles in a variety of emerging applications such as drug delivery, medical imaging, advanced materials, as well as in fundamental studies in nanotechnology highlights the wide relevance of the proposed method. Our key contribution to overcome the physical lower bound in the micro- and nano-scale gas foaming was to embed, prior to foaming, bulk micro- and nano-particles in a removable and deformable barrier film, whose role is to prevent the loss of the blowing agent, which is otherwise too fast to allow bubble formation. Furthermore, the barrier film allows for non-isotropic deformation of the particle and/or of the hollow, affording non-spherical hollow particles. In comparison with available methods to produce hollow micro- and nano-particles, our method is versatile since it offers independent control over the dimensions, material and shape of the particles, and the number, shape and open/closed features of the hollows. We have gas- foamed polystyrene and poly-(lactic-co-glycolic) acid particles 200 ~m to 200 nm in size, spherical, ellipsoidal and discoidal in shape, obtaining open or closed, single or multiple, variable in size hollows.展开更多
This paper presents a numerical study on the turbulent bubbly wakes created by the ventilated partial cavity.A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its com...This paper presents a numerical study on the turbulent bubbly wakes created by the ventilated partial cavity.A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its complex gas leakage rate induced by the local turbulent shear stress.Based on the Eulerian-Eulerian two-fluid modeling framework,a population balance approach based on MUltiple-SIze-Group (MUSIG) model is incorporated to simulate the size evolution of the sheared off microbubbles and its complex interactions with the two-phase flow structure in the wake region.Numerical predictions at various axial locations downstream of the test body were in satisfactory agreement with the experimental measurements.The captured bubbly wake structure illustrates that the bubbles may disperse as a twin-vortex tube driven by gravity effect.The predicted Sauter mean bubble diameter has confirmed the dominance of the coleascense process in the axial direction.As the bubbles develop downstream,the coleascense and breakup rate gradually reach balance,resulting in the stable bubble diameter.A close examination of the flow structures,gas void fraction distributions and the bubble size evolution provides valuable insights into the complex physical phenomenon induced by ventilated cavity.展开更多
基金The National Basic Research Program of China (973Program) (No.2006CB933206)the National Natural Science Foundation of China(No.50872021,60725101)
文摘A system for in vitro investigation of ultrasound contrast agent's enhancement effect is presented and evaluated. It includes the digital B-mode ultrasound scanner Belson3000A, the tissue-mimicking ultrasound phantoms and the software which is used for image quantitative analysis. The linear range, optimal settings and repeatability of the system are assessed and explored by scanning the ultrasound phantoms with different reflective intensities. The measurements are performed under an acoustic power from 4.8 to 12.3 mW, the scanner centre frequency is 3.5 MH and the gain setting is 50 dB. Both a self-made surfactant encapsulated microbubble and a commercial ultrasound contrast agent are scanned. The results show that the pixel intensity of ultrasonic images increases with the increase in the sound power, and for the stronger reflective phantoms of more particles, the increasing trend is much more evident. The system is optimal for evaluating the microbubble contrast agents' enhancement effects. It presents a simple, effective and real-time means for characterizing the enhancement ability of microbubbles.
文摘This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly and cheap technology, common in polymer processing and known as gas foaming. The central role played by ad hoc polymeric hollow micro- and nano-particles in a variety of emerging applications such as drug delivery, medical imaging, advanced materials, as well as in fundamental studies in nanotechnology highlights the wide relevance of the proposed method. Our key contribution to overcome the physical lower bound in the micro- and nano-scale gas foaming was to embed, prior to foaming, bulk micro- and nano-particles in a removable and deformable barrier film, whose role is to prevent the loss of the blowing agent, which is otherwise too fast to allow bubble formation. Furthermore, the barrier film allows for non-isotropic deformation of the particle and/or of the hollow, affording non-spherical hollow particles. In comparison with available methods to produce hollow micro- and nano-particles, our method is versatile since it offers independent control over the dimensions, material and shape of the particles, and the number, shape and open/closed features of the hollows. We have gas- foamed polystyrene and poly-(lactic-co-glycolic) acid particles 200 ~m to 200 nm in size, spherical, ellipsoidal and discoidal in shape, obtaining open or closed, single or multiple, variable in size hollows.
基金supported by the Chinese Council Scholarship (Grant No.2009611040)the Australian Research Council (Grant No.DP0877743)
文摘This paper presents a numerical study on the turbulent bubbly wakes created by the ventilated partial cavity.A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its complex gas leakage rate induced by the local turbulent shear stress.Based on the Eulerian-Eulerian two-fluid modeling framework,a population balance approach based on MUltiple-SIze-Group (MUSIG) model is incorporated to simulate the size evolution of the sheared off microbubbles and its complex interactions with the two-phase flow structure in the wake region.Numerical predictions at various axial locations downstream of the test body were in satisfactory agreement with the experimental measurements.The captured bubbly wake structure illustrates that the bubbles may disperse as a twin-vortex tube driven by gravity effect.The predicted Sauter mean bubble diameter has confirmed the dominance of the coleascense process in the axial direction.As the bubbles develop downstream,the coleascense and breakup rate gradually reach balance,resulting in the stable bubble diameter.A close examination of the flow structures,gas void fraction distributions and the bubble size evolution provides valuable insights into the complex physical phenomenon induced by ventilated cavity.