Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, p...Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.展开更多
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical conditio...With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.展开更多
In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the...In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the relation between active energy E and oxygen concentration c. The reaction order n and active energy E were calculated with this equation based on experiments of static oxygen consumption tests. In addition, we proved the rationality of the E-c equation using a kinetic compensation effect and obtained the isokinetic temperature Tc. The results show that: 1) the gas coal oxidizes easily with increasing temperature and the oxidation tends to be spontaneous at higher temperatures; 2) the oxygen concentration c affects oxygen consumption very much at lower temperatures but has only a small effect at higher temperatures; 3) the isokinetic temperature Tc was 127 ℃ which has been experimentally validated as the key turning point during low-temperature spontaneous combustion of gas coal.展开更多
MIE is an important parameter to be used to rank the ignition risk of the combustible materials.Commonly used electric circuits for generating spark have been reviewed and their features are analyzed in detail.Attenti...MIE is an important parameter to be used to rank the ignition risk of the combustible materials.Commonly used electric circuits for generating spark have been reviewed and their features are analyzed in detail.Attention to avoiding test errors is stressed.Ranking of ignition risk is suggested based on MIE data.展开更多
The welding fume has significant effects on the weld workers' health. In order to overwhelm the shortcomings of the control measures of the welding fume, the research of the purifying of welding fume on the spot was ...The welding fume has significant effects on the weld workers' health. In order to overwhelm the shortcomings of the control measures of the welding fume, the research of the purifying of welding fume on the spot was carried out. The purifying device was designed. The relationship between the corona discharge voltage and the purifying efficiency was investigated through experiments with different needle electrode numbers, different ring electrode numbers and different needle-plate distances. The results show that 5-needle double-ring electrode has the best efficiency; the purifying efficiency is increase with the lessening of the needle-plate distance and the increase of the discharge voltage. Using 5-needle double-ring electrode, the purifying efficiency reaches its maximum value 97.9% while the needle-plate distance is 6 cm, the discharge voltage is -35 kV. The purifying device has an excellent purifying effect on the welding fume.展开更多
Consideration of the chemical reaction activity of the end gas in a spark ignition and operating conditions are combined to predict the onset of knock and associated performance in an engine fuelled with methane.A two...Consideration of the chemical reaction activity of the end gas in a spark ignition and operating conditions are combined to predict the onset of knock and associated performance in an engine fuelled with methane.A two-zone predictive combustion model was developed based on an estimate of the efiFective duration of the combustion period and the mass burning rate for any set of operating conditions.The unburned end gas preignition chemical reaction activity is described by a detailed chemical reaction kinetic scheme for methane and air.The variation with time of the value of a formulated dimensionless knock parameter(k)is calculated.It is shown that whenever knocking is encountered,the value of'k' builds up to a sufficiently high value that exceeds a critical value.Under normal operating conditions, the value of'k'remains throughout the whole combustion period at comparatively very low levels. It is shown that the model and the use of this knock criterion'k'produce results that are in good agreement with experiment.展开更多
To study the gas dynamic and heat transfer phenomena inside a single isolated longitudinal solid propellant surface crack,two3-D geometric models with different crack shapes were constructed.Concerning the influence o...To study the gas dynamic and heat transfer phenomena inside a single isolated longitudinal solid propellant surface crack,two3-D geometric models with different crack shapes were constructed.Concerning the influence of propagation of jet from the igniter on the flame spreading phenomena in the crack,flow region around the opening of the crack was also included in the above geometric models.A theoretical framework was then adopted to model the conjugate heat transfer in the combustion channel and the crack cavity.Numerical simulation results indicate that the ignition shock wave can spread into the crack cavity.Extremely high overpressure and pressurization rate were observed along the crack front.It is possible that the crack may propagate before the flame front reaches it.An ignited region located at the crack front near to the channel surface in downstream direction was generated long before the flame front reached the crack opening in both models.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.40874052)the Key Laboratory of Geo-detection (China University of Geosciences,Beijing),Ministry of Education
文摘Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.
文摘With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.
基金financial support provided by the National Key Technology R&D Program during the 11th Five-Year Period (No. 2006BAK03B05)the National Natural Science Foundation of China (Nos.50534090, 50674090 and 50804047)+1 种基金the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety, China University of Mining and Technology (Nos.08KF14 and SKLCRSM09X04)the Scien-tific Research Foundation of China University of Mining & Technology (No.2007A001)
文摘In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the relation between active energy E and oxygen concentration c. The reaction order n and active energy E were calculated with this equation based on experiments of static oxygen consumption tests. In addition, we proved the rationality of the E-c equation using a kinetic compensation effect and obtained the isokinetic temperature Tc. The results show that: 1) the gas coal oxidizes easily with increasing temperature and the oxidation tends to be spontaneous at higher temperatures; 2) the oxygen concentration c affects oxygen consumption very much at lower temperatures but has only a small effect at higher temperatures; 3) the isokinetic temperature Tc was 127 ℃ which has been experimentally validated as the key turning point during low-temperature spontaneous combustion of gas coal.
文摘MIE is an important parameter to be used to rank the ignition risk of the combustible materials.Commonly used electric circuits for generating spark have been reviewed and their features are analyzed in detail.Attention to avoiding test errors is stressed.Ranking of ignition risk is suggested based on MIE data.
文摘The welding fume has significant effects on the weld workers' health. In order to overwhelm the shortcomings of the control measures of the welding fume, the research of the purifying of welding fume on the spot was carried out. The purifying device was designed. The relationship between the corona discharge voltage and the purifying efficiency was investigated through experiments with different needle electrode numbers, different ring electrode numbers and different needle-plate distances. The results show that 5-needle double-ring electrode has the best efficiency; the purifying efficiency is increase with the lessening of the needle-plate distance and the increase of the discharge voltage. Using 5-needle double-ring electrode, the purifying efficiency reaches its maximum value 97.9% while the needle-plate distance is 6 cm, the discharge voltage is -35 kV. The purifying device has an excellent purifying effect on the welding fume.
基金support of the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘Consideration of the chemical reaction activity of the end gas in a spark ignition and operating conditions are combined to predict the onset of knock and associated performance in an engine fuelled with methane.A two-zone predictive combustion model was developed based on an estimate of the efiFective duration of the combustion period and the mass burning rate for any set of operating conditions.The unburned end gas preignition chemical reaction activity is described by a detailed chemical reaction kinetic scheme for methane and air.The variation with time of the value of a formulated dimensionless knock parameter(k)is calculated.It is shown that whenever knocking is encountered,the value of'k' builds up to a sufficiently high value that exceeds a critical value.Under normal operating conditions, the value of'k'remains throughout the whole combustion period at comparatively very low levels. It is shown that the model and the use of this knock criterion'k'produce results that are in good agreement with experiment.
文摘To study the gas dynamic and heat transfer phenomena inside a single isolated longitudinal solid propellant surface crack,two3-D geometric models with different crack shapes were constructed.Concerning the influence of propagation of jet from the igniter on the flame spreading phenomena in the crack,flow region around the opening of the crack was also included in the above geometric models.A theoretical framework was then adopted to model the conjugate heat transfer in the combustion channel and the crack cavity.Numerical simulation results indicate that the ignition shock wave can spread into the crack cavity.Extremely high overpressure and pressurization rate were observed along the crack front.It is possible that the crack may propagate before the flame front reaches it.An ignited region located at the crack front near to the channel surface in downstream direction was generated long before the flame front reached the crack opening in both models.