The present work is concerned with extracting information about intermolecular potential energies of binary mixtures of CO2 with C2H6, C3H8, n-C4Hlo and iso-C4Hlo, by the usage of the inversion method, and then predic...The present work is concerned with extracting information about intermolecular potential energies of binary mixtures of CO2 with C2H6, C3H8, n-C4Hlo and iso-C4Hlo, by the usage of the inversion method, and then predicting the dilute gas transport properties of the mixtures. Using the inverted pair potential energies, the Chap- man-Enskog version of the kinetic theory was applied to calculate transport properties, except thermal conductivity of mixtures. The calculation of thermal conductivity through the methods of Schreiber et al. and Uribe et al. was discussed. Calculations were performed over a wide temperature range and equimolar composition. Rather accurate correlations for the viscosity coefficients of the mixtures in the temperature range were reproduced from the pre- sent unlike intermolecular potential energies. Our estimated accuracies for the viscosity are within ±2%. Acceptable agreement between the predicted values of the viscosity and thermal conductivity with the literature values demon- strates the predictive power of the inversion scheme. In the case of thermal conductivity our results are in favor of the preference of Uribe et al.'s method over Schreiber et al.'s scheme.展开更多
Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent...Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent conducting material via adsorption of H on a 2D β-GaS sheet. This adsorption results in geometrical changes to the local structures around the H. The calculated electronic structures reveal metallic characteristics of the 2D α-GaS material upon H adsorption and a large optical band gap of 2.72 eV with a significant Burstein-Moss shift of 0.67 eVo The simulated electrical resistivity is as low as 10^-4 Ω.cm, comparable to the benchmark for ITO thin films.展开更多
基金supports from the Shiraz University of Technology
文摘The present work is concerned with extracting information about intermolecular potential energies of binary mixtures of CO2 with C2H6, C3H8, n-C4Hlo and iso-C4Hlo, by the usage of the inversion method, and then predicting the dilute gas transport properties of the mixtures. Using the inverted pair potential energies, the Chap- man-Enskog version of the kinetic theory was applied to calculate transport properties, except thermal conductivity of mixtures. The calculation of thermal conductivity through the methods of Schreiber et al. and Uribe et al. was discussed. Calculations were performed over a wide temperature range and equimolar composition. Rather accurate correlations for the viscosity coefficients of the mixtures in the temperature range were reproduced from the pre- sent unlike intermolecular potential energies. Our estimated accuracies for the viscosity are within ±2%. Acceptable agreement between the predicted values of the viscosity and thermal conductivity with the literature values demon- strates the predictive power of the inversion scheme. In the case of thermal conductivity our results are in favor of the preference of Uribe et al.'s method over Schreiber et al.'s scheme.
基金This work was financially supported by National University of Singapore, Ministry of Education of Singapore, Ministry of Defence of Singapore, National Research Foundation of Singapore and National Natural Science Foundation of China (Nos. 21233006 and 21473164).
文摘Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent conducting material via adsorption of H on a 2D β-GaS sheet. This adsorption results in geometrical changes to the local structures around the H. The calculated electronic structures reveal metallic characteristics of the 2D α-GaS material upon H adsorption and a large optical band gap of 2.72 eV with a significant Burstein-Moss shift of 0.67 eVo The simulated electrical resistivity is as low as 10^-4 Ω.cm, comparable to the benchmark for ITO thin films.