Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in...Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.展开更多
The Poyang Lake is one of the most frequently flooded areas in China. Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and...The Poyang Lake is one of the most frequently flooded areas in China. Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and mitigation. The present study identified the characteristics variations of historical floods in the Poyang Lake and their tendencies based on the Mann-Kendall(M-K) test, and also investigated the related affecting factors, both from climate and human activities. The results revealed that the highest flood stages, duration as well as hazard coefficient of floods showed a long-term increasing linear trend during the last 60 years with the M-K statistic of 1.49, 1.60 and 1.50, respectively. And, a slightly increasing linear trend in the timing of the highest stages indicated the floods occurred later and later during the last six decades. The rainfall during the flood season and subsequent discharges of the Changjiang(Yangtze) River and runoff from the Poyang Lake Basin were mainly responsible for the severe flood situation in the Poyang Lake in the 1990 s. In addition, the intensive human activities, including land reclamation and levee construction, also played a supplementary role in increasing severity of major floods. While, the fewer floods in the Poyang Lake after 2000 can be attributed to not only the less rainfall over the Poyang Lake Basin and low discharges of the Changjiang River during flood periods, but also the stronger influences of human activity which increased the floodwater storage of the Poyang Lake than before.展开更多
The different spatial distributions of aerosol-induced direct radiative forcing and climatic effects in a weak (2003) and a strong (2006) East Asian summer monsoon (EASM) circulation were simulated using a high-...The different spatial distributions of aerosol-induced direct radiative forcing and climatic effects in a weak (2003) and a strong (2006) East Asian summer monsoon (EASM) circulation were simulated using a high-resolution regional climate model (RegCM3).Results showed that the atmospheric circulations of summer monsoon have direct relations with transport of aerosols and their climatic effects.Both the top-of-the-atmosphere (TOA) and the surface-negative radiative forcing of aerosols were stronger in weak EASM circulations.The main difference in aerosol-induced negative forcing in two summers varied between 2 and 14 W m-2 from the Sichuan Basin to North China,where a maximum in aerosol-induced negative forcing was also noticed in the EASM-dominated areas.The spatial difference in the simulated aerosol optical depth (AOD) in two summers generally showed the similar pictures.Surface cooling effects induced by aerosols were spatially more uniform in weak EASM circulations and cooler by about 1-4.5℃.A preliminary analysis here indicated that a weaker low-level wind speed not conducive to the transport and diffusion of aerosols could make more contributions to the differences in the two circulations.展开更多
The 2 ℃ warming target has been used widely in global and regional climate change research. Previous studies have shown large uncertainties in the time when surface air temperature (SAT) change over China will reac...The 2 ℃ warming target has been used widely in global and regional climate change research. Previous studies have shown large uncertainties in the time when surface air temperature (SAT) change over China will reach 2℃ rela- tive to the pre-industrial era. To understand the uncertainties, we analyzed the projected SAT in the twenty-first century using 40 state-of-the-art climate models under two Repre- sentative Concentration Pathways (RCP4.5 and RCPS.5) from the Coupled Model Intercomparison Project Phase 5. The 2℃ threshold-crossing time (TCT) of SAT averaged across China was around 2033 and 2029 for RCP4.5 and RCP8.5, respectively. Considering a 4-1o- range of inter- model SAT change, the upper and lower bounds of the 2 ℃ TCT could differ by about 25 years or even more. Uncer- tainty in the projected SAT and the warming rate around the TCT are the two main factors responsible for the TCT uncertainty. The former is determined by the climate sensi- tivity represented by the global mean surface temperature response. About 45 % of the intermodel variance of the projected 2 ~C TCT for averaged SAT over China can be explained by climate sensitivity across the models, which is contributed mainly by central and southern China. In a cli- mate more sensitive to CO2 forcing, stronger greenhouse effect, less stratus cloud over the East Asian monsoon region, and less snow cover on the Tibetan Plateau result in increased downward longwave radiation, increased shortwave radia- tion, and decreased shortwave radiation reflected by the surface, respectively, all of which may advance the TCT.展开更多
Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more...Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more confidence, the uncertainty interval should be as narrow as possible. Here, the soil organic carbon (SOC) dynamics of the major paddy soil subgroup from 4 different paddy field regions of China (located in 4 counties under different climate-soil-management combinations) were modeled using the DeNitrification- DeComposition (DNDC) model for the period from 1980 to 2008. Uncertainty intervals associated with the SOC dynamics for these 4 subgroups were estimated by a long-term global sensitivity and uncertainty analysis (i. e., the Sobolt method), and their sensitivities to 7 influential factors were quantified using the total effect sensitivity index. The results, modeled with high confidence, indicated that in the past 29 years, the studied paddy soils in Xinxing, Yixing, and Zhongjiang counties were carbon (C) sinks, while the paddy soil in Helong County was a C source. The 3 C sinks sequestered 12.2 (5.4, 19.6), 17.1 (8.9, 25.0), and 16.9 (-1.2, 33.6) t C ha-1 (values in the parentheses are the 5th and 95th percentiles, respectively). Conversely, the C source had a loss of -5.4 (-14.2, 0.06) t C ha-1 in the past 29 years. The 7 factors, which changed with the climate-soil-management context, exhibited variable influences on modeled SOC. Measures with potential to conserve or sequestrate more C into paddy soils, such as incorporating more crop residues into soils and reducing chemical fertilizer application rates, were recommended for specific soils based on the sensitivity analysis results.展开更多
Using 24 proxy temperature series, the rates of temperature change in China are analyzed at the 30- to 100-year scales for the past 2000 years and at the 10-year scale for the past 500 years. The results show that, at...Using 24 proxy temperature series, the rates of temperature change in China are analyzed at the 30- to 100-year scales for the past 2000 years and at the 10-year scale for the past 500 years. The results show that, at the 100-year scale, the warming rate for the whole of China in the 20th century was only 0.6±1.6℃/100 a (interval at the 95% confidence level, which is used here- after), while the peak warming rate for the period from the Little Ice Age (LIA) to the 20th century reached 1.1_+1.2~C/100 a, which was the greatest in the past 500 years and probably the past 2000 years. At the 30-year scale, warming in the 20th century was quite notable, but the peak rate was still less than rates for previous periods, such as the rapid warming from the LIA to the 20th century and from the 270s-290s to 300s-320s. At the 10-year scale, the warming in the late 20th century was very evident, but it might not be unusual in the context of warming over the past 500 years. The exact timing, duration and magnitude of the warming peaks varied from region to region at all scales. The peak rates of the 100-year scale warming in the AD 180s-350s in northeastern China as well as those in the 260s-410s and 500s-660s in Tibet were all greater than those from the mid-19th to 20th century. Meanwhile, the rates of the most rapid cooling at scales of 30 to 100 years in the LIA were promi-nent, but they were also not unprecedented in the last 2000 years. At the 10-year scale, for the whole of China, the most rapid decadal cooling in the 20th century was from the 1940s to 1950s with a rate of -0.3±0.6℃/10 a, which was similar to rates for periods before the 20th century. For all regions, the rates of most rapid cooling in the 20th century were all less than those for previous periods.展开更多
基金supported by the National Basic Research Program of China(Grant No.2009CB421407)the National Natural Science Foundation of China(Grant No.41130103)
文摘Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.
基金Under the auspices of National Basic Research Program of China(No.2012CB417003)National Natural Science Foundation of China(No.41101024)
文摘The Poyang Lake is one of the most frequently flooded areas in China. Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and mitigation. The present study identified the characteristics variations of historical floods in the Poyang Lake and their tendencies based on the Mann-Kendall(M-K) test, and also investigated the related affecting factors, both from climate and human activities. The results revealed that the highest flood stages, duration as well as hazard coefficient of floods showed a long-term increasing linear trend during the last 60 years with the M-K statistic of 1.49, 1.60 and 1.50, respectively. And, a slightly increasing linear trend in the timing of the highest stages indicated the floods occurred later and later during the last six decades. The rainfall during the flood season and subsequent discharges of the Changjiang(Yangtze) River and runoff from the Poyang Lake Basin were mainly responsible for the severe flood situation in the Poyang Lake in the 1990 s. In addition, the intensive human activities, including land reclamation and levee construction, also played a supplementary role in increasing severity of major floods. While, the fewer floods in the Poyang Lake after 2000 can be attributed to not only the less rainfall over the Poyang Lake Basin and low discharges of the Changjiang River during flood periods, but also the stronger influences of human activity which increased the floodwater storage of the Poyang Lake than before.
基金supported by the National Basic Research Program of China (2009CB421407)the Special Public Welfare Research Fund for Meteorological Profession of China Meteorological Administration (GYHY201006022)
文摘The different spatial distributions of aerosol-induced direct radiative forcing and climatic effects in a weak (2003) and a strong (2006) East Asian summer monsoon (EASM) circulation were simulated using a high-resolution regional climate model (RegCM3).Results showed that the atmospheric circulations of summer monsoon have direct relations with transport of aerosols and their climatic effects.Both the top-of-the-atmosphere (TOA) and the surface-negative radiative forcing of aerosols were stronger in weak EASM circulations.The main difference in aerosol-induced negative forcing in two summers varied between 2 and 14 W m-2 from the Sichuan Basin to North China,where a maximum in aerosol-induced negative forcing was also noticed in the EASM-dominated areas.The spatial difference in the simulated aerosol optical depth (AOD) in two summers generally showed the similar pictures.Surface cooling effects induced by aerosols were spatially more uniform in weak EASM circulations and cooler by about 1-4.5℃.A preliminary analysis here indicated that a weaker low-level wind speed not conducive to the transport and diffusion of aerosols could make more contributions to the differences in the two circulations.
基金supported jointly by the ‘‘Strategic Priority Research Program–Climate Change: Carbon Budget and Related Issues’’ of the Chinese Academy of Sciences (XDA05110300)the Research Fund for Commonwealth Trades (Meteorology) (GYHY201506012)+1 种基金the National Natural Science Foundation of China (41420104006)the China Postdoctoral Science Foundation (2015M581152)
文摘The 2 ℃ warming target has been used widely in global and regional climate change research. Previous studies have shown large uncertainties in the time when surface air temperature (SAT) change over China will reach 2℃ rela- tive to the pre-industrial era. To understand the uncertainties, we analyzed the projected SAT in the twenty-first century using 40 state-of-the-art climate models under two Repre- sentative Concentration Pathways (RCP4.5 and RCPS.5) from the Coupled Model Intercomparison Project Phase 5. The 2℃ threshold-crossing time (TCT) of SAT averaged across China was around 2033 and 2029 for RCP4.5 and RCP8.5, respectively. Considering a 4-1o- range of inter- model SAT change, the upper and lower bounds of the 2 ℃ TCT could differ by about 25 years or even more. Uncer- tainty in the projected SAT and the warming rate around the TCT are the two main factors responsible for the TCT uncertainty. The former is determined by the climate sensi- tivity represented by the global mean surface temperature response. About 45 % of the intermodel variance of the projected 2 ~C TCT for averaged SAT over China can be explained by climate sensitivity across the models, which is contributed mainly by central and southern China. In a cli- mate more sensitive to CO2 forcing, stronger greenhouse effect, less stratus cloud over the East Asian monsoon region, and less snow cover on the Tibetan Plateau result in increased downward longwave radiation, increased shortwave radia- tion, and decreased shortwave radiation reflected by the surface, respectively, all of which may advance the TCT.
基金supported by the National Natural Science Foundation of China (No.41471177)the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX2-EW-QN404)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA05050509)
文摘Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more confidence, the uncertainty interval should be as narrow as possible. Here, the soil organic carbon (SOC) dynamics of the major paddy soil subgroup from 4 different paddy field regions of China (located in 4 counties under different climate-soil-management combinations) were modeled using the DeNitrification- DeComposition (DNDC) model for the period from 1980 to 2008. Uncertainty intervals associated with the SOC dynamics for these 4 subgroups were estimated by a long-term global sensitivity and uncertainty analysis (i. e., the Sobolt method), and their sensitivities to 7 influential factors were quantified using the total effect sensitivity index. The results, modeled with high confidence, indicated that in the past 29 years, the studied paddy soils in Xinxing, Yixing, and Zhongjiang counties were carbon (C) sinks, while the paddy soil in Helong County was a C source. The 3 C sinks sequestered 12.2 (5.4, 19.6), 17.1 (8.9, 25.0), and 16.9 (-1.2, 33.6) t C ha-1 (values in the parentheses are the 5th and 95th percentiles, respectively). Conversely, the C source had a loss of -5.4 (-14.2, 0.06) t C ha-1 in the past 29 years. The 7 factors, which changed with the climate-soil-management context, exhibited variable influences on modeled SOC. Measures with potential to conserve or sequestrate more C into paddy soils, such as incorporating more crop residues into soils and reducing chemical fertilizer application rates, were recommended for specific soils based on the sensitivity analysis results.
基金supported by Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q1-01)China Global Change Research Program (Grant No. 2010CB950101)+1 种基金National Natural Science Foundation of China (Grant No. 40625002)the IGSNRR Research Foundation (Grant No. 200905006)
文摘Using 24 proxy temperature series, the rates of temperature change in China are analyzed at the 30- to 100-year scales for the past 2000 years and at the 10-year scale for the past 500 years. The results show that, at the 100-year scale, the warming rate for the whole of China in the 20th century was only 0.6±1.6℃/100 a (interval at the 95% confidence level, which is used here- after), while the peak warming rate for the period from the Little Ice Age (LIA) to the 20th century reached 1.1_+1.2~C/100 a, which was the greatest in the past 500 years and probably the past 2000 years. At the 30-year scale, warming in the 20th century was quite notable, but the peak rate was still less than rates for previous periods, such as the rapid warming from the LIA to the 20th century and from the 270s-290s to 300s-320s. At the 10-year scale, the warming in the late 20th century was very evident, but it might not be unusual in the context of warming over the past 500 years. The exact timing, duration and magnitude of the warming peaks varied from region to region at all scales. The peak rates of the 100-year scale warming in the AD 180s-350s in northeastern China as well as those in the 260s-410s and 500s-660s in Tibet were all greater than those from the mid-19th to 20th century. Meanwhile, the rates of the most rapid cooling at scales of 30 to 100 years in the LIA were promi-nent, but they were also not unprecedented in the last 2000 years. At the 10-year scale, for the whole of China, the most rapid decadal cooling in the 20th century was from the 1940s to 1950s with a rate of -0.3±0.6℃/10 a, which was similar to rates for periods before the 20th century. For all regions, the rates of most rapid cooling in the 20th century were all less than those for previous periods.