The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by...The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.展开更多
Over the last 2000 years, approximately 38 ancient cities were abandoned through desertification in Hexi Corridor, Northwest China. Among them, 21.05% were abandoned during the Northern and Southern Dynasties, 21.05% ...Over the last 2000 years, approximately 38 ancient cities were abandoned through desertification in Hexi Corridor, Northwest China. Among them, 21.05% were abandoned during the Northern and Southern Dynasties, 21.05% during the end of the Tang Dynasty and the Five Dynasties, and 57.9% during the Ming and Qing dynasties. At the same time, main lakes were shrinking rapidly from the 5th Century to the 6th Century and the end of the Qing Dynasty. The climate in these periods was relatively arid and cold with frequent dusts. The phase of these changes indicated that there were three periods of desertification enlargement in the northern China. They were Northern and Southern Dynasties, the end of Tang Dynasty and Five Dynasties, the Ming and Qing dynasties. The macro-process of desertification in the study area was controlled mainly by the climatic changes. But from the facts that the population density in the middle of Qing Dynasty had exceeded the critical index of population pressure in arid area and the usage rate of water resources had exceeded 40% in Hexi Corridor, this paper also suggests that human activities have played an important role in desertification processes of the study area mainly during the recent 300 years.展开更多
The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface h...The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface height (SSH) change caused by the Pacific Decadal Oscillation (PDO-SSH). Here, the PDO- SSH signal is extracted from satellite altimeter data by multi-variable linear regression, and regional SLR in the altimeter era is calculated, before and after removing that signal. The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific, with the strongest signal confined to the tropical and North Pacific. Over the past 20 years, the PDO-SSH accounts for about 30%/-400% of altimeter-observed SLR in the regions 8° 15°N, 130°-160°E and 30°-40°N, 170°-220°E. Along the coast &North America, the PDO-SSH signal dramatically offsets the coastal SLR, as the sea level trends change sign from falling to rising.展开更多
Human-induced land use/cover change (LUCC) forms an important component of global environmental change. Therefore, it is important to study land use/cover and its change at local, regional and global scales. In this p...Human-induced land use/cover change (LUCC) forms an important component of global environmental change. Therefore, it is important to study land use/cover and its change at local, regional and global scales. In this paper we conducted the study of land use change in Northeast China, one of the most important agricultural zones of the nation. From 1986 to 2000, according to the study results obtained from Landsat images, widespread changes in land use/cover took place in the study area. Grassland, marsh, water body and woodland decreased by 9864, 3973, 1367 and 10,052km2, respectively. By comparison, paddy field, dry farmland, and built-up land expanded by 7339, 17193 and 700km2, respectively. Those changes bore an interactive relationship with the environment, especially climate change. On the one hand, climate warming created a potential environment for grassland and marsh to be changed to farmland as more crops could thrive in the warmer climate, and for dry farmland to paddy field. On the other hand, the changed surface cover modified the local climate. Those changes, in turn, have adversely influenced the local environment by accelerating land degradation. In terms of socio-economic driving forces, population augment, regional economic development, and national and provincial policies were confirmed as main driving factors for land use change.展开更多
Net primary productivity(NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford App...Net primary productivity(NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate the NPP of plant communities in Hengduan Mountains area of China, and to explore the relationship between NPP and altitude in this region. We examined the mechanisms underlying vegetation growth responses to climate change and quantitatively assessed the effects of ecological protection measures by partitioning the contributions of climate change and human activities to NPP changes. The results demonstrated that: 1) the average total and annual NPP values over the years were 209.15 Tg C and 468.06 g C/(m2·yr), respectively. Their trend increasingly fluctuated, with spatial distribution strongly linked to altitude(i.e., lower and higher NPP in high altitude and low altitude areas, respectively) and 2400 m represented the marginal altitude for vegetation differentiation; 2) areas where climate was the main factor affecting NPP accounted for 18.2% of the total research area, whereas human activities were the primary factor influencing NPP in 81.8% of the total research area, which indicated that human activity was the main force driving changes in NPP. Areas where climatic factors(i.e., temperature and precipitation) were the main driving factors occupied 13.6%(temperature) and 6.0%(precipitation) of the total research area, respectively. Therefore, the effect of temperature on NPP changes was stronger than that of precipitation; and 3) the majority of NPP residuals from 2001 to 2014 were positive, with human activities playing an active role in determining regional vegetation growth, possibly due to the return of farmland back to forest and natural forest protection. However, this positive trend is decreasing. This clearly shows the periodical nature of ecological projects and a lack of long-term effectiveness.展开更多
Human activities and climate changes are deemed to be two primary driving factors influencing the changes of hydrological processes, and quantitatively separating their influences on runoff changes will be of great si...Human activities and climate changes are deemed to be two primary driving factors influencing the changes of hydrological processes, and quantitatively separating their influences on runoff changes will be of great significance to regional water resources planning and management. In this study, the impact of climate changes and human activities was initially qualitatively distinguished through a coupled water and energy budgets analysis, and then this effect was further separated by means of a quantitative estimation based on hydrological sensitivity analysis. The results show that: 1) precipitation, wind speed, potential evapotranspiration and runoff have a significantly decreasing trend, while temperature has a remarkably increasing tendency in the Weihe River Basin, China; 2) the major driving factor on runoff decrease in the 1970 s and 1990 s in the basin is climate changes compared with that in the baseline 1960 s, while that in the 1980 s and 2000 s is human activities. Compared with the results based on Variable Infiltration Capacity(VIC) model, the contributions calculated in this study have certain reliability. The results are of great significance to local water resources planning and management.展开更多
Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and huma...Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and human activities. The flood center shifted from North China and the Yangtze-Huaihe basin in the 1950s towards the south, north and west of China, and located in the south of the Yangtze River and South China after the 1990s. The FA in the western provinces was continuously on the rise since the 1950s. There are two characteristics for the future flood pattem in China. The pattern of "flood in the south and drought in the north" depends on the north-south shift of the maximum rainfall region in eastern China. The flood intensification to the west of Hu Huanyong's line mainly results from the increase of rainfall, extreme precipitation and the melting of glaciers under the background of human activity magnification.展开更多
For the last two decades the world has undergone a population explosion which has been accompanied by a speeding up of urbanization and land use for industrial and agricultural products. These involve a vast increase ...For the last two decades the world has undergone a population explosion which has been accompanied by a speeding up of urbanization and land use for industrial and agricultural products. These involve a vast increase in the discharge of pollutants into very different receiving water bodies, and have had adverse effects on the various components of the environment. For a long time, human has concerned a little of the natural environment. It is obvious that this variation in surface temperature of the earth increases the level of sea due to snowmelt. So climate change is manifested by many phenomena: floods, droughts, fires, tornadoes, cyclones, earthquakes, volcanic eruptions, diseases etc.. The statement today is dramatic. Entire regions were devastated and many rivers and lakes have become polluted around the world. Pollution has it nature which is hard to be absorbed. Where did the different pollutants come from? What are the risks to the aquatic environment? To prevent and combat the general decline of these ecosystems, it is important to distinguish and determine the effects of different sources of pollution and any changes that may suffer the physical environment. The climate depends primarily on changes in earth orbit parameters, which affect the solar radiation received by the earth surface. Therefore, human participates strongly to these changes, for example, pollution is the main reason to argue the greenhouse effect, an increase of anthropogenic carbon dioxide (CO2) into the atmosphere, which promotes global warming to the planet. These modifications are already applied in order to ensure durable development in water resources by controlling discharges into streams to preserve water resources for future generations and to ensure reconciliation between man-climate and environment.展开更多
A high-altitude peat sequence from the heart of the Spanish Central System(Gredos range) was analysed through a multi-proxy approach to determine the sensitivity of high-mountain habitats to climate, fire and land use...A high-altitude peat sequence from the heart of the Spanish Central System(Gredos range) was analysed through a multi-proxy approach to determine the sensitivity of high-mountain habitats to climate, fire and land use changes during the last seven hundred years, providing valuable insight into our understanding of the vegetation history and environmental changes in a mountain pass close to a traditional route of transhumance. The pollen data indicate that the vegetation was dominated by shrublands and grasslands with scattered pines in high-mountain areas, while in the valleys cereals, chestnut and olive trees were cultivated. Strong declines of high-mountain pines percentages are recorded at 1540, 1675, 1765, 1835 and 1925 cal AD, which may be related to increasing grazing activities and/or the occurrence of anthropogenic fires. The practice of mountain summer farming and transhumance deeply changed and redesigned the landscape of the high altitudes in central Spain(Gredos range) since the Middle Ages, although its dynamics was influenced in some way by climate variability of the past seven centuries.展开更多
Under global change and climate variations,determining the impacts of climate change and human activities on cropland net primary productivity(NPP)in Bangladesh,India and Myanmar(BIM)is of great significance for ident...Under global change and climate variations,determining the impacts of climate change and human activities on cropland net primary productivity(NPP)in Bangladesh,India and Myanmar(BIM)is of great significance for identifying yield-limiting factors,making adaptive agricultural management plans,and improving yields.Based on the GLOPEM-CEVSA model,through an integration of remote sensing data and LAI simulation,we investigated the impacts and spatiotemporal changes of water and human activities on BIM from 1982 to 2015.Three types of cropland NPPs were considered:actual NPP(NPPA),NPP affected by temperature and water(NPPWT),and NPP only affected by temperature(NPPT).Our analysis revealed that the water factor plays a predominant role in determining the NPP level in the BIM.Temperature variability was found to be conducive to NPPT,exhibiting an increasing trend of 10.66 g C m^(-2) yr^(-1).However,this trend was partially offset by precipitation variability,resulting in a net increase of 0.96 g C m^(-2) yr^(-1).In comparing temperature-driven NPP to temperature and water-driven NPP,water stress caused NPPT to decrease by 65.46% compared to NPPWT for the entire region.Cropland NPP in northwestern India and the central Deccan Plateau were significantly affected by water stress.Moreover,the influence of water on NPP in the BIM exhibited a substantial upward trend from 1982 to 2015,with Myanmar experiencing the most significant increase.The gap between NPPWT and NPPA in BIM demonstrated a notable decreasing trend during the same period,underscoring the positive impact of human activities on NPP.Inferences drawn from our findings suggest that with the implementation of rational and efficient crop management practices,there is a 36.80% potential improvement in NPPA compared to NPPWT in the BIM region,with India and Myanmar showing potential increases of 39.20% and 38.29%,respectively.These insights provide guidance for practical measures aimed at water resource management to enhance cropland productivity in the BIM,and they present a methodology for quantifying the effects of climatic changes and human activities at a regional scale.展开更多
Due to the impact of climate change and human activities, the upper and middle reaches of the Tao'er River have become an ecologically sensitive area in Northeast China. It is important to evaluate the contributions ...Due to the impact of climate change and human activities, the upper and middle reaches of the Tao'er River have become an ecologically sensitive area in Northeast China. It is important to evaluate the contributions of climate change and human activities to water suitability in the Tao'er River area. From the perspective of water and heat balance, the water suitability index (Cr) was used to analyze the water suitability of the upper and middle reaches of the river. The nonparametric Mann-Kendall, moving t-test and cumulative anomaly methods were used to detect abrupt changes in Taonan station runoff from 1961 to 2012. Three inflexion years were detected. Thus, the entire time period was divided into four periods: 1961-1974, 1975-1983, 1984-1998, and 1999-2012. In order to estimate the impacts of climate change and human activities on runoff, the slope change ratio of cumulative quan- tity (SCRCQ) was adopted. Finally, the contribution of climate change and human activity to Cr was transformed from the contribution of climate change and human activity to runoff by the sensitivity coefficient method and SCIRCQ method. The results showed that the water suitability index (cr) had a decreasing trend 1961-2012. Fac- tors influencing cr, such as net radiation and runoff, also exhibited a decreasing trend, while precipitation exhibited an increasing trend over the past 52 years. The trends of Cr, net radiation and runoff were obvious, which passed the Mann-kendall test of significance at a=0.05. Human activities were the main factors that affected runoff, al- though the degree of impact was different at different times. During the past 52 years, the biggest contributor to the change in Cr was precipitation.展开更多
基金Under the auspices of the National Natural Science Foundation of China (No. 30570303)
文摘The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.
文摘Over the last 2000 years, approximately 38 ancient cities were abandoned through desertification in Hexi Corridor, Northwest China. Among them, 21.05% were abandoned during the Northern and Southern Dynasties, 21.05% during the end of the Tang Dynasty and the Five Dynasties, and 57.9% during the Ming and Qing dynasties. At the same time, main lakes were shrinking rapidly from the 5th Century to the 6th Century and the end of the Qing Dynasty. The climate in these periods was relatively arid and cold with frequent dusts. The phase of these changes indicated that there were three periods of desertification enlargement in the northern China. They were Northern and Southern Dynasties, the end of Tang Dynasty and Five Dynasties, the Ming and Qing dynasties. The macro-process of desertification in the study area was controlled mainly by the climatic changes. But from the facts that the population density in the middle of Qing Dynasty had exceeded the critical index of population pressure in arid area and the usage rate of water resources had exceeded 40% in Hexi Corridor, this paper also suggests that human activities have played an important role in desertification processes of the study area mainly during the recent 300 years.
基金Supported by the National Natural Science Foundation of China(No.41376028)the Knowledge Innovation Program of Chinese Academy of Sciences(CAS)(No.Y22114101Q)+2 种基金the National Basic Research Program of China(973 Program)(No.2013CB956202)the"100-Talent Project"of Chinese Academy of Sciences,China(No.Y32109101L)the Special Funds of CAS(No.XDAl 1040205)
文摘The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface height (SSH) change caused by the Pacific Decadal Oscillation (PDO-SSH). Here, the PDO- SSH signal is extracted from satellite altimeter data by multi-variable linear regression, and regional SLR in the altimeter era is calculated, before and after removing that signal. The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific, with the strongest signal confined to the tropical and North Pacific. Over the past 20 years, the PDO-SSH accounts for about 30%/-400% of altimeter-observed SLR in the regions 8° 15°N, 130°-160°E and 30°-40°N, 170°-220°E. Along the coast &North America, the PDO-SSH signal dramatically offsets the coastal SLR, as the sea level trends change sign from falling to rising.
基金Under the auspices of the Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-341)National Natural Science Foundation of China (No. 40871187, 40801208)
文摘Human-induced land use/cover change (LUCC) forms an important component of global environmental change. Therefore, it is important to study land use/cover and its change at local, regional and global scales. In this paper we conducted the study of land use change in Northeast China, one of the most important agricultural zones of the nation. From 1986 to 2000, according to the study results obtained from Landsat images, widespread changes in land use/cover took place in the study area. Grassland, marsh, water body and woodland decreased by 9864, 3973, 1367 and 10,052km2, respectively. By comparison, paddy field, dry farmland, and built-up land expanded by 7339, 17193 and 700km2, respectively. Those changes bore an interactive relationship with the environment, especially climate change. On the one hand, climate warming created a potential environment for grassland and marsh to be changed to farmland as more crops could thrive in the warmer climate, and for dry farmland to paddy field. On the other hand, the changed surface cover modified the local climate. Those changes, in turn, have adversely influenced the local environment by accelerating land degradation. In terms of socio-economic driving forces, population augment, regional economic development, and national and provincial policies were confirmed as main driving factors for land use change.
基金Under the auspices of National Key Basic Research Program of China(No.2015CB452706)National Natural Science Foundation of China(No.41401198,41571527)+1 种基金Youth Talent Team Program of the Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(No.SDSQB-2015-01)Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2016332)
文摘Net primary productivity(NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate the NPP of plant communities in Hengduan Mountains area of China, and to explore the relationship between NPP and altitude in this region. We examined the mechanisms underlying vegetation growth responses to climate change and quantitatively assessed the effects of ecological protection measures by partitioning the contributions of climate change and human activities to NPP changes. The results demonstrated that: 1) the average total and annual NPP values over the years were 209.15 Tg C and 468.06 g C/(m2·yr), respectively. Their trend increasingly fluctuated, with spatial distribution strongly linked to altitude(i.e., lower and higher NPP in high altitude and low altitude areas, respectively) and 2400 m represented the marginal altitude for vegetation differentiation; 2) areas where climate was the main factor affecting NPP accounted for 18.2% of the total research area, whereas human activities were the primary factor influencing NPP in 81.8% of the total research area, which indicated that human activity was the main force driving changes in NPP. Areas where climatic factors(i.e., temperature and precipitation) were the main driving factors occupied 13.6%(temperature) and 6.0%(precipitation) of the total research area, respectively. Therefore, the effect of temperature on NPP changes was stronger than that of precipitation; and 3) the majority of NPP residuals from 2001 to 2014 were positive, with human activities playing an active role in determining regional vegetation growth, possibly due to the return of farmland back to forest and natural forest protection. However, this positive trend is decreasing. This clearly shows the periodical nature of ecological projects and a lack of long-term effectiveness.
基金Under the auspices of National Natural Science Foundation of China(No.51190093,51179149,51179149,51309098)National Basic Research Program of China(No.2011CB403306)+2 种基金Non-profit Industry Financial Program of Ministry of Water Resources(No.201301039)Program for New Century Excellent Talents in Ministry of Education(No.NCET-10-0933)Key Innovation Group of Science and Technology of Shaanxi Province(No.2012KCT-10)
文摘Human activities and climate changes are deemed to be two primary driving factors influencing the changes of hydrological processes, and quantitatively separating their influences on runoff changes will be of great significance to regional water resources planning and management. In this study, the impact of climate changes and human activities was initially qualitatively distinguished through a coupled water and energy budgets analysis, and then this effect was further separated by means of a quantitative estimation based on hydrological sensitivity analysis. The results show that: 1) precipitation, wind speed, potential evapotranspiration and runoff have a significantly decreasing trend, while temperature has a remarkably increasing tendency in the Weihe River Basin, China; 2) the major driving factor on runoff decrease in the 1970 s and 1990 s in the basin is climate changes compared with that in the baseline 1960 s, while that in the 1980 s and 2000 s is human activities. Compared with the results based on Variable Infiltration Capacity(VIC) model, the contributions calculated in this study have certain reliability. The results are of great significance to local water resources planning and management.
基金funded by the key program of National Natural Science Foundation of China (Grant No.40730635)Commonweal and Specialized Program for Scientific Research,Ministry of Water Resources of China (Grant No.2007011024)
文摘Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and human activities. The flood center shifted from North China and the Yangtze-Huaihe basin in the 1950s towards the south, north and west of China, and located in the south of the Yangtze River and South China after the 1990s. The FA in the western provinces was continuously on the rise since the 1950s. There are two characteristics for the future flood pattem in China. The pattern of "flood in the south and drought in the north" depends on the north-south shift of the maximum rainfall region in eastern China. The flood intensification to the west of Hu Huanyong's line mainly results from the increase of rainfall, extreme precipitation and the melting of glaciers under the background of human activity magnification.
文摘For the last two decades the world has undergone a population explosion which has been accompanied by a speeding up of urbanization and land use for industrial and agricultural products. These involve a vast increase in the discharge of pollutants into very different receiving water bodies, and have had adverse effects on the various components of the environment. For a long time, human has concerned a little of the natural environment. It is obvious that this variation in surface temperature of the earth increases the level of sea due to snowmelt. So climate change is manifested by many phenomena: floods, droughts, fires, tornadoes, cyclones, earthquakes, volcanic eruptions, diseases etc.. The statement today is dramatic. Entire regions were devastated and many rivers and lakes have become polluted around the world. Pollution has it nature which is hard to be absorbed. Where did the different pollutants come from? What are the risks to the aquatic environment? To prevent and combat the general decline of these ecosystems, it is important to distinguish and determine the effects of different sources of pollution and any changes that may suffer the physical environment. The climate depends primarily on changes in earth orbit parameters, which affect the solar radiation received by the earth surface. Therefore, human participates strongly to these changes, for example, pollution is the main reason to argue the greenhouse effect, an increase of anthropogenic carbon dioxide (CO2) into the atmosphere, which promotes global warming to the planet. These modifications are already applied in order to ensure durable development in water resources by controlling discharges into streams to preserve water resources for future generations and to ensure reconciliation between man-climate and environment.
基金funded by the project HAR2013-43701-P (Spanish Economy and Competitiveness Ministry)Excellence Research Projects Program from the Andalusian Government P11-RNM-7033
文摘A high-altitude peat sequence from the heart of the Spanish Central System(Gredos range) was analysed through a multi-proxy approach to determine the sensitivity of high-mountain habitats to climate, fire and land use changes during the last seven hundred years, providing valuable insight into our understanding of the vegetation history and environmental changes in a mountain pass close to a traditional route of transhumance. The pollen data indicate that the vegetation was dominated by shrublands and grasslands with scattered pines in high-mountain areas, while in the valleys cereals, chestnut and olive trees were cultivated. Strong declines of high-mountain pines percentages are recorded at 1540, 1675, 1765, 1835 and 1925 cal AD, which may be related to increasing grazing activities and/or the occurrence of anthropogenic fires. The practice of mountain summer farming and transhumance deeply changed and redesigned the landscape of the high altitudes in central Spain(Gredos range) since the Middle Ages, although its dynamics was influenced in some way by climate variability of the past seven centuries.
基金The National Natural Science Foundation of China(31861143015)The Natural Science Foundation of Shandong Province,China(ZR2023QC254).
文摘Under global change and climate variations,determining the impacts of climate change and human activities on cropland net primary productivity(NPP)in Bangladesh,India and Myanmar(BIM)is of great significance for identifying yield-limiting factors,making adaptive agricultural management plans,and improving yields.Based on the GLOPEM-CEVSA model,through an integration of remote sensing data and LAI simulation,we investigated the impacts and spatiotemporal changes of water and human activities on BIM from 1982 to 2015.Three types of cropland NPPs were considered:actual NPP(NPPA),NPP affected by temperature and water(NPPWT),and NPP only affected by temperature(NPPT).Our analysis revealed that the water factor plays a predominant role in determining the NPP level in the BIM.Temperature variability was found to be conducive to NPPT,exhibiting an increasing trend of 10.66 g C m^(-2) yr^(-1).However,this trend was partially offset by precipitation variability,resulting in a net increase of 0.96 g C m^(-2) yr^(-1).In comparing temperature-driven NPP to temperature and water-driven NPP,water stress caused NPPT to decrease by 65.46% compared to NPPWT for the entire region.Cropland NPP in northwestern India and the central Deccan Plateau were significantly affected by water stress.Moreover,the influence of water on NPP in the BIM exhibited a substantial upward trend from 1982 to 2015,with Myanmar experiencing the most significant increase.The gap between NPPWT and NPPA in BIM demonstrated a notable decreasing trend during the same period,underscoring the positive impact of human activities on NPP.Inferences drawn from our findings suggest that with the implementation of rational and efficient crop management practices,there is a 36.80% potential improvement in NPPA compared to NPPWT in the BIM region,with India and Myanmar showing potential increases of 39.20% and 38.29%,respectively.These insights provide guidance for practical measures aimed at water resource management to enhance cropland productivity in the BIM,and they present a methodology for quantifying the effects of climatic changes and human activities at a regional scale.
基金National Natural Science Foundation of China(41201568,41202134)
文摘Due to the impact of climate change and human activities, the upper and middle reaches of the Tao'er River have become an ecologically sensitive area in Northeast China. It is important to evaluate the contributions of climate change and human activities to water suitability in the Tao'er River area. From the perspective of water and heat balance, the water suitability index (Cr) was used to analyze the water suitability of the upper and middle reaches of the river. The nonparametric Mann-Kendall, moving t-test and cumulative anomaly methods were used to detect abrupt changes in Taonan station runoff from 1961 to 2012. Three inflexion years were detected. Thus, the entire time period was divided into four periods: 1961-1974, 1975-1983, 1984-1998, and 1999-2012. In order to estimate the impacts of climate change and human activities on runoff, the slope change ratio of cumulative quan- tity (SCRCQ) was adopted. Finally, the contribution of climate change and human activity to Cr was transformed from the contribution of climate change and human activity to runoff by the sensitivity coefficient method and SCIRCQ method. The results showed that the water suitability index (cr) had a decreasing trend 1961-2012. Fac- tors influencing cr, such as net radiation and runoff, also exhibited a decreasing trend, while precipitation exhibited an increasing trend over the past 52 years. The trends of Cr, net radiation and runoff were obvious, which passed the Mann-kendall test of significance at a=0.05. Human activities were the main factors that affected runoff, al- though the degree of impact was different at different times. During the past 52 years, the biggest contributor to the change in Cr was precipitation.