On the basis of NOAA/CPC data of sea surface temperature anomaly in the Nifio regions during Jan. 1950 - Dec. 2003, the wavelet power spectrum of SST were studied with significance and confidence testing at different ...On the basis of NOAA/CPC data of sea surface temperature anomaly in the Nifio regions during Jan. 1950 - Dec. 2003, the wavelet power spectrum of SST were studied with significance and confidence testing at different scales in this paper. It shows that the SST are provided with multi-time scales structure nested one another, and vary on scales of 2 - 7 years, 8 - 20 years and 〉30 years. The most significant variation of the warm and cold episodes is in the 4-year band of period. The power, frequency structure and confidence of the same episode are different in different Nino regions. The intensity of oscillations is increasing at low frequency bands and decreasing at high frequency bands from east to west in the Nino regions, especially after 1970.展开更多
A previous modeling study about Pacific Ocean warming derived polar vortex response signals, by subtracting those in the Indian Ocean warming experiments from those in the Indo-Pacific. This approach questions the res...A previous modeling study about Pacific Ocean warming derived polar vortex response signals, by subtracting those in the Indian Ocean warming experiments from those in the Indo-Pacific. This approach questions the resemblance of such an indirectly derived response to one directly forced by Pacific Ocean warming. This is relevant to the additive nonlinearity of atmospheric responses to separated Indian and Pacific Ocean forcing. In the present study, an additional set of ensemble experiments are performed by prescribing isolated SST forcing in the tropical Pacific Ocean to address this issue. The results suggest a qualitative resemblance between responses in the derived and additional experiments. Thus, previous findings about the impact of Indian and Pacific Ocean wanning are robust. This study has important implications for future climate change projections, considering the non-unanimous warming rates in tropical oceans in the 21st century. Nevertheless, a comparison of present direct-forced experiments with previous indirect-forced experiments suggests a significant additive nonlinearity between the Indian and Pacific Ocean warmings. Further diagnosis suggests that the nonlinearity may originate from the thermodynamic processes over the tropics.展开更多
Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the freq...Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the frequency and intensity of tropical cyclone are investigated. The results showed that with the climatic warming in both hemispheres, the frequency of the tropical cyclone over the western North Pacific Ocean reduces and its intensity weakens simultaneously. A possible explanation might be that the cold air invasion from the Southern Hemisphere weakens due to global warming.展开更多
By using in situ daily observations in East China during 1961-2007 and NCEP reanalysis data, the methods of statistical analyses, urban minus rural and observation minus reanalysis, it is revealed that the observed cl...By using in situ daily observations in East China during 1961-2007 and NCEP reanalysis data, the methods of statistical analyses, urban minus rural and observation minus reanalysis, it is revealed that the observed climate change and surface warming in East China were mainly induced by urbanization. The results show that East China has experienced two warmer periods of 1930s and 1980s in the past century; from 1951 to 2007, the regional mean temperature increased at a rate of 0.14℃ per decade; heat waves happened in urban center more frequently, and local climate showed a warming and dry trend; there was no significant linear trend in regional mean precipitation in the past 50 years. Urbanization was a crucial element for the regional warming; about 44% of the warming was due to heat island effect in the mega city.展开更多
Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied. It was found that there are interdecadal variations in heat ransport from middle latitudes to higher latitudes. Th...Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied. It was found that there are interdecadal variations in heat ransport from middle latitudes to higher latitudes. The variations of interdecadal heat transport over longitudes around 120° E are out of phase with those over around 90° E and over the Northcastern Pacific. The seasonal variations of heat transport were also discussed. It was found that most heat is transported in the lower layer of the troposphere from middle latitudes to higher latitudes. Over around 120° E and over around 120° W . the seasonal and interannual variations of heat transport across 32.5° N are apparent and in phase.展开更多
Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection an...Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection and low-level convergence over the central Pacific, on the predominance of central Pacific (CP) E1 Nifio in the most recent decade. However, how interannual variabilities affect the climate mean state has been less thoroughly investigated. Using a linear shallow-water model, the ef- fect of decadal changes of air-sea interaction on the two types of El Nifio and the climate mean state over the tropical Pacific is examined. It is demonstrated that the predominance of the eastem Pacific (EP) and CP E1 Nino is dominated mainly by relationships between anomalous wind stresses and sea surface temperature (SST). Furthermore, changes between air-sea interactions from 1980-98 to 1999-2011 prompted the generation of the La Ninalike pattern, which is similar to the background change in the most recent decade.展开更多
The variation in Arctic sea ice has significant implications for climate change due to its huge influence on the global heat balance. In this study, we quantified the spatio-temporal variation of Arctic sea ice distri...The variation in Arctic sea ice has significant implications for climate change due to its huge influence on the global heat balance. In this study, we quantified the spatio-temporal variation of Arctic sea ice distribution using Advanced Microwave Scanning Radiometer(AMSR-E) sea-ice concentration data from 2003 to 2013. The results found that, over this period, the extent of sea ice reached a maximum in 2004, whereas in 2007 and 2012, the extent of summer sea ice was at a minimum. It declined continuously from 2010 to 2012, falling to its lowest level since 2003. Sea-ice extent fell continuously each summer between July and mid-September before increasing again. It decreased most rapidly in September, and the summer reduction rate was 1.35 × 10~5 km^2/yr, twice as fast as the rate between 1979 and 2006, and slightly slower than from 2002 to 2011. Area with >90% sea-ice concentration decreased by 1.32 × 10~7 km^2/yr, while locations with >50% sea-ice concentration, which were mainly covered by perennial ice, were near the North Pole, the Beaufort Sea, and the Queen Elizabeth Islands. Perennial Arctic ice decreased at a rate of 1.54 × 10~5 km^2 annually over the past 11 years.展开更多
This paper investigates the influence of Indian Ocean Dipole (IOD) on climatic variations over East Asian monsoon region, based on CAS IAP AGCM-Ⅱduring Equatorial East Pacific Ocean SSTA or not. The results show that...This paper investigates the influence of Indian Ocean Dipole (IOD) on climatic variations over East Asian monsoon region, based on CAS IAP AGCM-Ⅱduring Equatorial East Pacific Ocean SSTA or not. The results show that the southwest monsoon over East Asian will break out later than normal, the intensity of the summer monsoon over the South China Sea (SCS) is stronger than normal, and more rainfall on Chinese main land is simulated when only IOD forcing exists. With both IOD and Equatorial East Pacific Ocean SSTA forcing, the southwest monsoon will break out much later than normal, the intensity of the SCS summer monsoon also is weaker than normal, and less rainfall in North China is simulated. Therefore, Equatorial East Pacific Ocean SSTA and IOD have a synergic effect.展开更多
This study compared basic warming patterns among three typical warm periods — the midHolocene(MH), Medieval Warm Period(MWP), and the twentieth century warming(20CW) — and carried out a comprehensive heat budg...This study compared basic warming patterns among three typical warm periods — the midHolocene(MH), Medieval Warm Period(MWP), and the twentieth century warming(20CW) — and carried out a comprehensive heat budget analysis using four experiments simulated by the Flexible Global Ocean–Atmosphere–Land System model, Spectral Version 2(FGOALS-s2). The model simulates similar spatial warming patterns in all three warm periods, e.g. stronger warming appears in the high latitudes. However, changes in surface air temperature(SAT) over the tropical regions are different: a significant warming occurs in the 20 CW and MWP but a significant cooling in the MH. The heat budget analysis suggested that SAT changes are mainly induced by the heat flux. In the MH, the insolation and positive snow and ice feedback are responsible for the warming in the Southern Ocean but the wind anomalies and decreased downward longwave radiation(DLR) induce the cooling in the tropics. In the 20 CW, the decreased shortwave radiation and increased sea surface temperature dependency of evaporation dampen the warming in the tropics. In the MWP, the shortwave radiation induces the Southern Ocean warming, but the DLR and wind anomalies warm the SAT in the tropics. The simulated ocean temperature and ocean heat content anomalies are different in the upper ocean(above 1500 m), which are mainly induced by the wind stress changes, but similar in the deep ocean in all three warm periods.展开更多
The main objective of this work is to examine statistical causality relationships between low-frequency modes of climate variability and winter (December to February) anomaly of net heat flux at the Mediterranean ai...The main objective of this work is to examine statistical causality relationships between low-frequency modes of climate variability and winter (December to February) anomaly of net heat flux at the Mediterranean air-sea interface. The introduction of the concept of Granger causality allowed us to examine the influence of these climates indices on the net heat flux anomaly and to select Mediterranean surface regions that really influenced by each index. Results show that the winter anomaly of the net heat flux in the Algerian basin south and the gulf of Lion is mainly caused by the Arctic Oscillation. El Nifio-Southern Oscillation influences much more the Algerian basin north and the northern lonian Sea. The Quasi-Biennial Oscillation affects only the Alboran and the Tyrrhenian Seas. But the Adriatic and Levantine basin are impacted by any climate index. They also show that these climate indices can increase explained variance in winter variations of air-sea net heat flux by 10% to 15%, with a lag of three seasons. These relationships are less persistent and spatially limited.展开更多
Evaluation of the mean climate and climate variability in the Southern Hemisphere (SH) in the Twentieth Century Reanalysis data version 2 (20CRv2) is conducted and the results are compared with the NCEP/NCAR versi...Evaluation of the mean climate and climate variability in the Southern Hemisphere (SH) in the Twentieth Century Reanalysis data version 2 (20CRv2) is conducted and the results are compared with the NCEP/NCAR version 2 Reanalysis data (NCEPv2) and the Hadley Center sea-level pressure data (HadSLPv2).The results show that SH polar High,SH subtropical High,upper level split jet,cross-equatorial flow,Antarctic Oscillation (AAO),and the pattem of Pacific-South-America (PSA) has been effectively captured by 20CRv2 during 1979-2010,with an apparent zonal asymmetry of AAO in the austral winter (June-July-August,JJA).The notable upward linear trend of AAO in the entire period of 1871-2010 is represented in both 20CRv2 and HadS1Pv2.The most remarkable discrepancy of the SH climate variability between 20CRv2 and HadSLPv2 occurred in 1897-1920 and was partly caused by such factors as the paucity of meteorological and oceanographic data in the SH to be assimilated,the handling of the specified sea-ice concentration in South Pole,and imperfect climate models.The consistency of these reanalysis data is increased with the use of a large amount of satellite observation and radiosonde data,particularly after 1979.展开更多
Applying the empirical orthogonal function (EOF) analysis to the sea surface temperature (SST) field of the tropical Pacific and Indian Oceans for determination of the first eigenvector field, the current work reveals...Applying the empirical orthogonal function (EOF) analysis to the sea surface temperature (SST) field of the tropical Pacific and Indian Oceans for determination of the first eigenvector field, the current work reveals that there are significant zonal gradients of SST in all seasons of the year in the northwestern and eastern Indian Ocean and equatorial central and eastern Pacific and western Pacific. It is also found that the variance contribution rates of the first EOF mode of every season is more than 33%. This shows that this kind of spatial distribution of the SST is stable. This pattern is named Pacific-Indian Oceans SSTA mode. Through careful analysis and comparison, an index of the mode was defined.展开更多
Climatological laws are studied for the annual frequency of tropical cyclone occurrence and the date of the yearly first landfall, which take place in the Guangdong province or pose serious threats on it from 1951 to ...Climatological laws are studied for the annual frequency of tropical cyclone occurrence and the date of the yearly first landfall, which take place in the Guangdong province or pose serious threats on it from 1951 to 1999, using the data in the Yearly Book on Typhoons. A new method that has developed over recent years for the study of temporal sequences, the wavelet analysis, is used, in addition to more common statistical approaches. By analyzing two wavelet functions, MHAT and MORLET, we have compared the results of transformation of the wavelets provided that other conditions remain unchanged. It is discovered that the variance of MORLET wavelet has better indication of primary periods; period-time sequence charts can reflect major affecting periods for individual sections of time; when compared with the original sequence, the chart shows a little shift. On the other hand, such shift is absent in the MHAT wavelet, but its higher frequency part of variance covers up the primary periods to make its variance less predominant as compared to the MORLET wavelet. Besides, the work compares two different assumptions of an amplifying factor a. It is found that primary periods can be shown more clearly in the variance when a takes the exponential of 2 than it takes values continuously. Studying the annual frequency of tropical cyclones and the date of first appearance for periodic patterns, we have found that the primary periods extracted by this approach are similar to those obtained by wavelet transformation.展开更多
The summer western North Pacific subtropical high(WNPSH) has large influences on the East Asian summer climate. Many studies have focused on the projected changes in the WNPSH, but little is known about the changes un...The summer western North Pacific subtropical high(WNPSH) has large influences on the East Asian summer climate. Many studies have focused on the projected changes in the WNPSH, but little is known about the changes under different global warming targets, such as 1.5℃ and 2.0℃. This study investigates the changes in the WNPSH under six global warming targets(1.5℃, 2.0℃, 2.5℃,3.0℃, 3.5℃, and 4.0℃) in both the mid-and lower troposphere, using the outputs of CMIP5 model in historical simulations and under Representative Concentration Pathway 8.5. The projected changes in the WNPSH, which is measured by multiple variables, show that it changes little under the 1.5℃ target in the mid-troposphere, but weakens and retreats approximately 2.5° in longitude under the 2.0℃ target. It tends to linearly weaken with warming greater than 2.5℃ and shifts eastward by approximately 6.0° in longitude by the 4.0℃ target. Meanwhile, the WNPSH intensifies and extends westward under the 1.5℃ target in the lower troposphere, but changes little with warming rising from 1.5℃ to 2.0℃. It is projected to extend westward by approximately2.0° in longitude by the 4.0℃ target.展开更多
The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal...The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.展开更多
The paper aims to investigate the potential of a water body to influence in lowering the warmth in the city of Sao Jose do Rio Preto, Brazil, due to the evaporative cooling effects. In order to verify its potential, t...The paper aims to investigate the potential of a water body to influence in lowering the warmth in the city of Sao Jose do Rio Preto, Brazil, due to the evaporative cooling effects. In order to verify its potential, three collecting points of temperature and humidity were placed in an urban area close to the municipal dam. The first one was placed on the dam margin, the second one, 50 m distant of the margin and, the third one, 100 m distant. The data were taken during December 2010 and then compared to the climate data of the Climate Station of CIIAGRO-Integrated Center of Agro Meteorological. The results show that the closer the collection point is to the water body, and the lower is the temperature variation. The humidity taxes verified at the closest point to the water body indicate values higher than those ones collected at the most distant point. The insertion of moisture through the water bodies in an urban environment demonstrated to be a strategy that improved the thermal conditions and has to be considered for urban planners to establish strategies of urban occupation.展开更多
The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International ...The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) monthly data for the period 1979-2010. Statistical analy- ses are used to identify respective contribution from ENSO and IOD. The results indicate that the first NIO SST warming in September-November is associated with an IOD event, while the second NIO SST warming in spring-summer following the mature phase of ENSO is associated with an ENSO event. In the year that IOD co-occurred with ENSO, NIO SST warms twice, rising in the ENSO developing year and decay year. Both short- wave radiation and latent heat flux contribute to the NIO SST variation. The change in shortwave radiation is due to the change in cloudiness. A cloud-SST feedback plays an important role in NIO SST warming. The latent heat flux is related to the change in monsoonal wind. In the first NIO warming, the SST anomaly is mainly due to the change in the latent heat flux. In the second NIO warming, both factors are important.展开更多
Due to the impact of climate change and human activities, the upper and middle reaches of the Tao'er River have become an ecologically sensitive area in Northeast China. It is important to evaluate the contributions ...Due to the impact of climate change and human activities, the upper and middle reaches of the Tao'er River have become an ecologically sensitive area in Northeast China. It is important to evaluate the contributions of climate change and human activities to water suitability in the Tao'er River area. From the perspective of water and heat balance, the water suitability index (Cr) was used to analyze the water suitability of the upper and middle reaches of the river. The nonparametric Mann-Kendall, moving t-test and cumulative anomaly methods were used to detect abrupt changes in Taonan station runoff from 1961 to 2012. Three inflexion years were detected. Thus, the entire time period was divided into four periods: 1961-1974, 1975-1983, 1984-1998, and 1999-2012. In order to estimate the impacts of climate change and human activities on runoff, the slope change ratio of cumulative quan- tity (SCRCQ) was adopted. Finally, the contribution of climate change and human activity to Cr was transformed from the contribution of climate change and human activity to runoff by the sensitivity coefficient method and SCIRCQ method. The results showed that the water suitability index (cr) had a decreasing trend 1961-2012. Fac- tors influencing cr, such as net radiation and runoff, also exhibited a decreasing trend, while precipitation exhibited an increasing trend over the past 52 years. The trends of Cr, net radiation and runoff were obvious, which passed the Mann-kendall test of significance at a=0.05. Human activities were the main factors that affected runoff, al- though the degree of impact was different at different times. During the past 52 years, the biggest contributor to the change in Cr was precipitation.展开更多
The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsur...The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsurface thermal anomalies that was sustained in the western-central equatorial Pacific throughout 2014–2015. Observational data and an intermediate ocean model are used to describe the sea surface temperature(SST) evolution during 2014–2015. Emphasis is placed on the processes involved in the 2015 El Nio event and their relationships with SST anomalies, including remote effects associated with the propagation and reflection of oceanic equatorial waves(as indicated in sea level(SL) signals) at the boundaries and local effects of the positive subsurface thermal anomalies. It is demonstrated that the positive subsurface thermal anomaly pattern that was sustained throughout 2014–2015 played an important role in maintaining warm SST anomalies in the equatorial Pacific. Further analyses of the SST budget revealed the dominant processes contributing to SST anomalies during 2014–2015. These analyses provide an improved understanding of the extent to which processes associated with the 2015 El Nio event are consistent with current El Nio and Southern Oscillation theories.展开更多
文摘On the basis of NOAA/CPC data of sea surface temperature anomaly in the Nifio regions during Jan. 1950 - Dec. 2003, the wavelet power spectrum of SST were studied with significance and confidence testing at different scales in this paper. It shows that the SST are provided with multi-time scales structure nested one another, and vary on scales of 2 - 7 years, 8 - 20 years and 〉30 years. The most significant variation of the warm and cold episodes is in the 4-year band of period. The power, frequency structure and confidence of the same episode are different in different Nino regions. The intensity of oscillations is increasing at low frequency bands and decreasing at high frequency bands from east to west in the Nino regions, especially after 1970.
基金supported by the Special Fund for Meteorological Scientific Research in the Public Interest of China Meteorological Administration (Grant No. GYHY201006022)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-BR-14 and KZCX2-YW-Q11-03)
文摘A previous modeling study about Pacific Ocean warming derived polar vortex response signals, by subtracting those in the Indian Ocean warming experiments from those in the Indo-Pacific. This approach questions the resemblance of such an indirectly derived response to one directly forced by Pacific Ocean warming. This is relevant to the additive nonlinearity of atmospheric responses to separated Indian and Pacific Ocean forcing. In the present study, an additional set of ensemble experiments are performed by prescribing isolated SST forcing in the tropical Pacific Ocean to address this issue. The results suggest a qualitative resemblance between responses in the derived and additional experiments. Thus, previous findings about the impact of Indian and Pacific Ocean wanning are robust. This study has important implications for future climate change projections, considering the non-unanimous warming rates in tropical oceans in the 21st century. Nevertheless, a comparison of present direct-forced experiments with previous indirect-forced experiments suggests a significant additive nonlinearity between the Indian and Pacific Ocean warmings. Further diagnosis suggests that the nonlinearity may originate from the thermodynamic processes over the tropics.
文摘Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the frequency and intensity of tropical cyclone are investigated. The results showed that with the climatic warming in both hemispheres, the frequency of the tropical cyclone over the western North Pacific Ocean reduces and its intensity weakens simultaneously. A possible explanation might be that the cold air invasion from the Southern Hemisphere weakens due to global warming.
基金supported by the Climate Change Special Foundation of China Meteorological Administration(No.CCSF-09-10 and CCSF201202)National Natural Science Foundation of China (No.41001023)+1 种基金CAS Pilot Special Project (No.XDA05090204)Jiangsu Research and Innovation Program for Graduate Student (No.CXZZ12-0497)
文摘By using in situ daily observations in East China during 1961-2007 and NCEP reanalysis data, the methods of statistical analyses, urban minus rural and observation minus reanalysis, it is revealed that the observed climate change and surface warming in East China were mainly induced by urbanization. The results show that East China has experienced two warmer periods of 1930s and 1980s in the past century; from 1951 to 2007, the regional mean temperature increased at a rate of 0.14℃ per decade; heat waves happened in urban center more frequently, and local climate showed a warming and dry trend; there was no significant linear trend in regional mean precipitation in the past 50 years. Urbanization was a crucial element for the regional warming; about 44% of the warming was due to heat island effect in the mega city.
文摘Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied. It was found that there are interdecadal variations in heat ransport from middle latitudes to higher latitudes. The variations of interdecadal heat transport over longitudes around 120° E are out of phase with those over around 90° E and over the Northcastern Pacific. The seasonal variations of heat transport were also discussed. It was found that most heat is transported in the lower layer of the troposphere from middle latitudes to higher latitudes. Over around 120° E and over around 120° W . the seasonal and interannual variations of heat transport across 32.5° N are apparent and in phase.
基金supported by the National Program for Support of Top-notch Young Professionals,the National Basic Research Program of China (Grant Nos. 2012CB955202 and 2012CB417404)"Western Pacific Ocean System: Structure, Dynamics, and Consequences" of the Chinese Academy Sciences (WPOS+1 种基金 Grant No. XDA10010405)the National Natural Science Foundation of China (Grant No. 41176014)
文摘Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection and low-level convergence over the central Pacific, on the predominance of central Pacific (CP) E1 Nifio in the most recent decade. However, how interannual variabilities affect the climate mean state has been less thoroughly investigated. Using a linear shallow-water model, the ef- fect of decadal changes of air-sea interaction on the two types of El Nifio and the climate mean state over the tropical Pacific is examined. It is demonstrated that the predominance of the eastem Pacific (EP) and CP E1 Nino is dominated mainly by relationships between anomalous wind stresses and sea surface temperature (SST). Furthermore, changes between air-sea interactions from 1980-98 to 1999-2011 prompted the generation of the La Ninalike pattern, which is similar to the background change in the most recent decade.
基金Under the auspices of National Natural Science Foundation of China(No.41676171)Qingdao National Laboratory for Marine Science and Technology of China(No.2016ASKJ02)+1 种基金Natural Science Foundation of Shandong(No.ZR2015DM015)Yantai Science&Technology Project(No.2013ZH094)
文摘The variation in Arctic sea ice has significant implications for climate change due to its huge influence on the global heat balance. In this study, we quantified the spatio-temporal variation of Arctic sea ice distribution using Advanced Microwave Scanning Radiometer(AMSR-E) sea-ice concentration data from 2003 to 2013. The results found that, over this period, the extent of sea ice reached a maximum in 2004, whereas in 2007 and 2012, the extent of summer sea ice was at a minimum. It declined continuously from 2010 to 2012, falling to its lowest level since 2003. Sea-ice extent fell continuously each summer between July and mid-September before increasing again. It decreased most rapidly in September, and the summer reduction rate was 1.35 × 10~5 km^2/yr, twice as fast as the rate between 1979 and 2006, and slightly slower than from 2002 to 2011. Area with >90% sea-ice concentration decreased by 1.32 × 10~7 km^2/yr, while locations with >50% sea-ice concentration, which were mainly covered by perennial ice, were near the North Pole, the Beaufort Sea, and the Queen Elizabeth Islands. Perennial Arctic ice decreased at a rate of 1.54 × 10~5 km^2 annually over the past 11 years.
基金National key fundamental research development program "Research of formation mechanism and forecast theory about fatal climatic calamity of China" (G1998040900).
文摘This paper investigates the influence of Indian Ocean Dipole (IOD) on climatic variations over East Asian monsoon region, based on CAS IAP AGCM-Ⅱduring Equatorial East Pacific Ocean SSTA or not. The results show that the southwest monsoon over East Asian will break out later than normal, the intensity of the summer monsoon over the South China Sea (SCS) is stronger than normal, and more rainfall on Chinese main land is simulated when only IOD forcing exists. With both IOD and Equatorial East Pacific Ocean SSTA forcing, the southwest monsoon will break out much later than normal, the intensity of the SCS summer monsoon also is weaker than normal, and less rainfall in North China is simulated. Therefore, Equatorial East Pacific Ocean SSTA and IOD have a synergic effect.
基金jointly supported by the National Natural Science Foundation of China[grant numbers 41406045 and 41376002]National Basic Research Program of China[grant number 2013CB956204]‘Strategic Priority Research Program on Climate Change:Carbon Budget and Relevant Issues’ of the Chinese Academy of Sciences[grant number XDA05110302]
文摘This study compared basic warming patterns among three typical warm periods — the midHolocene(MH), Medieval Warm Period(MWP), and the twentieth century warming(20CW) — and carried out a comprehensive heat budget analysis using four experiments simulated by the Flexible Global Ocean–Atmosphere–Land System model, Spectral Version 2(FGOALS-s2). The model simulates similar spatial warming patterns in all three warm periods, e.g. stronger warming appears in the high latitudes. However, changes in surface air temperature(SAT) over the tropical regions are different: a significant warming occurs in the 20 CW and MWP but a significant cooling in the MH. The heat budget analysis suggested that SAT changes are mainly induced by the heat flux. In the MH, the insolation and positive snow and ice feedback are responsible for the warming in the Southern Ocean but the wind anomalies and decreased downward longwave radiation(DLR) induce the cooling in the tropics. In the 20 CW, the decreased shortwave radiation and increased sea surface temperature dependency of evaporation dampen the warming in the tropics. In the MWP, the shortwave radiation induces the Southern Ocean warming, but the DLR and wind anomalies warm the SAT in the tropics. The simulated ocean temperature and ocean heat content anomalies are different in the upper ocean(above 1500 m), which are mainly induced by the wind stress changes, but similar in the deep ocean in all three warm periods.
文摘The main objective of this work is to examine statistical causality relationships between low-frequency modes of climate variability and winter (December to February) anomaly of net heat flux at the Mediterranean air-sea interface. The introduction of the concept of Granger causality allowed us to examine the influence of these climates indices on the net heat flux anomaly and to select Mediterranean surface regions that really influenced by each index. Results show that the winter anomaly of the net heat flux in the Algerian basin south and the gulf of Lion is mainly caused by the Arctic Oscillation. El Nifio-Southern Oscillation influences much more the Algerian basin north and the northern lonian Sea. The Quasi-Biennial Oscillation affects only the Alboran and the Tyrrhenian Seas. But the Adriatic and Levantine basin are impacted by any climate index. They also show that these climate indices can increase explained variance in winter variations of air-sea net heat flux by 10% to 15%, with a lag of three seasons. These relationships are less persistent and spatially limited.
基金supported by the Strategic Technological Program of the Chinese Academy of Sciences(Grant No.XDA05090426)the National Basic Research Program of China(Grant No.2010CB950304)the Key Program of the Chinese Academy of Sciences(Grant KZCX2-YW-QN202)
文摘Evaluation of the mean climate and climate variability in the Southern Hemisphere (SH) in the Twentieth Century Reanalysis data version 2 (20CRv2) is conducted and the results are compared with the NCEP/NCAR version 2 Reanalysis data (NCEPv2) and the Hadley Center sea-level pressure data (HadSLPv2).The results show that SH polar High,SH subtropical High,upper level split jet,cross-equatorial flow,Antarctic Oscillation (AAO),and the pattem of Pacific-South-America (PSA) has been effectively captured by 20CRv2 during 1979-2010,with an apparent zonal asymmetry of AAO in the austral winter (June-July-August,JJA).The notable upward linear trend of AAO in the entire period of 1871-2010 is represented in both 20CRv2 and HadS1Pv2.The most remarkable discrepancy of the SH climate variability between 20CRv2 and HadSLPv2 occurred in 1897-1920 and was partly caused by such factors as the paucity of meteorological and oceanographic data in the SH to be assimilated,the handling of the specified sea-ice concentration in South Pole,and imperfect climate models.The consistency of these reanalysis data is increased with the use of a large amount of satellite observation and radiosonde data,particularly after 1979.
基金The research on the variation of southeast Asian monsoons and their effect on the wetness inYunnan and neighboring areas - a national foundation project (40365001)
文摘Applying the empirical orthogonal function (EOF) analysis to the sea surface temperature (SST) field of the tropical Pacific and Indian Oceans for determination of the first eigenvector field, the current work reveals that there are significant zonal gradients of SST in all seasons of the year in the northwestern and eastern Indian Ocean and equatorial central and eastern Pacific and western Pacific. It is also found that the variance contribution rates of the first EOF mode of every season is more than 33%. This shows that this kind of spatial distribution of the SST is stable. This pattern is named Pacific-Indian Oceans SSTA mode. Through careful analysis and comparison, an index of the mode was defined.
基金Key National Scientific and Technological Project (96-908-05) Short-term Climate Prediction Research in Guangdong Province a problem-tackling scientific and technological issue for Guangdong province.
文摘Climatological laws are studied for the annual frequency of tropical cyclone occurrence and the date of the yearly first landfall, which take place in the Guangdong province or pose serious threats on it from 1951 to 1999, using the data in the Yearly Book on Typhoons. A new method that has developed over recent years for the study of temporal sequences, the wavelet analysis, is used, in addition to more common statistical approaches. By analyzing two wavelet functions, MHAT and MORLET, we have compared the results of transformation of the wavelets provided that other conditions remain unchanged. It is discovered that the variance of MORLET wavelet has better indication of primary periods; period-time sequence charts can reflect major affecting periods for individual sections of time; when compared with the original sequence, the chart shows a little shift. On the other hand, such shift is absent in the MHAT wavelet, but its higher frequency part of variance covers up the primary periods to make its variance less predominant as compared to the MORLET wavelet. Besides, the work compares two different assumptions of an amplifying factor a. It is found that primary periods can be shown more clearly in the variance when a takes the exponential of 2 than it takes values continuously. Studying the annual frequency of tropical cyclones and the date of first appearance for periodic patterns, we have found that the primary periods extracted by this approach are similar to those obtained by wavelet transformation.
基金This research was supported by the National Key R&D Program of China[grant number 2017YFA0603802]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA2006040102]the National Natural Science Foundation of China[grant number 41675084].
文摘The summer western North Pacific subtropical high(WNPSH) has large influences on the East Asian summer climate. Many studies have focused on the projected changes in the WNPSH, but little is known about the changes under different global warming targets, such as 1.5℃ and 2.0℃. This study investigates the changes in the WNPSH under six global warming targets(1.5℃, 2.0℃, 2.5℃,3.0℃, 3.5℃, and 4.0℃) in both the mid-and lower troposphere, using the outputs of CMIP5 model in historical simulations and under Representative Concentration Pathway 8.5. The projected changes in the WNPSH, which is measured by multiple variables, show that it changes little under the 1.5℃ target in the mid-troposphere, but weakens and retreats approximately 2.5° in longitude under the 2.0℃ target. It tends to linearly weaken with warming greater than 2.5℃ and shifts eastward by approximately 6.0° in longitude by the 4.0℃ target. Meanwhile, the WNPSH intensifies and extends westward under the 1.5℃ target in the lower troposphere, but changes little with warming rising from 1.5℃ to 2.0℃. It is projected to extend westward by approximately2.0° in longitude by the 4.0℃ target.
基金supported by the National Basic Research Program of China(2012CB955401 and 2009CB421406)the National Natural Science Foundation of China(41175072)
文摘The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.
文摘The paper aims to investigate the potential of a water body to influence in lowering the warmth in the city of Sao Jose do Rio Preto, Brazil, due to the evaporative cooling effects. In order to verify its potential, three collecting points of temperature and humidity were placed in an urban area close to the municipal dam. The first one was placed on the dam margin, the second one, 50 m distant of the margin and, the third one, 100 m distant. The data were taken during December 2010 and then compared to the climate data of the Climate Station of CIIAGRO-Integrated Center of Agro Meteorological. The results show that the closer the collection point is to the water body, and the lower is the temperature variation. The humidity taxes verified at the closest point to the water body indicate values higher than those ones collected at the most distant point. The insertion of moisture through the water bodies in an urban environment demonstrated to be a strategy that improved the thermal conditions and has to be considered for urban planners to establish strategies of urban occupation.
基金supported by the National Basic Research Program of China(973 Program,2012CB955603 &2010 CB950302)the Knowledge Innovation Program of the Chinese Academy of Sciences(XDA05090404)the National Natural Science Foundation of China(41149908)
文摘The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) monthly data for the period 1979-2010. Statistical analy- ses are used to identify respective contribution from ENSO and IOD. The results indicate that the first NIO SST warming in September-November is associated with an IOD event, while the second NIO SST warming in spring-summer following the mature phase of ENSO is associated with an ENSO event. In the year that IOD co-occurred with ENSO, NIO SST warms twice, rising in the ENSO developing year and decay year. Both short- wave radiation and latent heat flux contribute to the NIO SST variation. The change in shortwave radiation is due to the change in cloudiness. A cloud-SST feedback plays an important role in NIO SST warming. The latent heat flux is related to the change in monsoonal wind. In the first NIO warming, the SST anomaly is mainly due to the change in the latent heat flux. In the second NIO warming, both factors are important.
基金National Natural Science Foundation of China(41201568,41202134)
文摘Due to the impact of climate change and human activities, the upper and middle reaches of the Tao'er River have become an ecologically sensitive area in Northeast China. It is important to evaluate the contributions of climate change and human activities to water suitability in the Tao'er River area. From the perspective of water and heat balance, the water suitability index (Cr) was used to analyze the water suitability of the upper and middle reaches of the river. The nonparametric Mann-Kendall, moving t-test and cumulative anomaly methods were used to detect abrupt changes in Taonan station runoff from 1961 to 2012. Three inflexion years were detected. Thus, the entire time period was divided into four periods: 1961-1974, 1975-1983, 1984-1998, and 1999-2012. In order to estimate the impacts of climate change and human activities on runoff, the slope change ratio of cumulative quan- tity (SCRCQ) was adopted. Finally, the contribution of climate change and human activity to Cr was transformed from the contribution of climate change and human activity to runoff by the sensitivity coefficient method and SCIRCQ method. The results showed that the water suitability index (cr) had a decreasing trend 1961-2012. Fac- tors influencing cr, such as net radiation and runoff, also exhibited a decreasing trend, while precipitation exhibited an increasing trend over the past 52 years. The trends of Cr, net radiation and runoff were obvious, which passed the Mann-kendall test of significance at a=0.05. Human activities were the main factors that affected runoff, al- though the degree of impact was different at different times. During the past 52 years, the biggest contributor to the change in Cr was precipitation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41690122, 41690120, 41490644, 41490640 & 41475101)AoShan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology (Grant No. 2015ASTP)+6 种基金the Chinese Academy of Sciences Strategic Priority Projectthe Western Pacific Ocean System(Grant Nos. XDA11010105 & XDA11020306)the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)the National Natural Science Foundation of China Innovative Group Grant (Grant No. 41421005)Taishan Scholarship and Qingdao Innovative Program (Grant No. 2014GJJS0101)China Postdoctoral Science FoundationQingdao Postdoctoral Application Research Project
文摘The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsurface thermal anomalies that was sustained in the western-central equatorial Pacific throughout 2014–2015. Observational data and an intermediate ocean model are used to describe the sea surface temperature(SST) evolution during 2014–2015. Emphasis is placed on the processes involved in the 2015 El Nio event and their relationships with SST anomalies, including remote effects associated with the propagation and reflection of oceanic equatorial waves(as indicated in sea level(SL) signals) at the boundaries and local effects of the positive subsurface thermal anomalies. It is demonstrated that the positive subsurface thermal anomaly pattern that was sustained throughout 2014–2015 played an important role in maintaining warm SST anomalies in the equatorial Pacific. Further analyses of the SST budget revealed the dominant processes contributing to SST anomalies during 2014–2015. These analyses provide an improved understanding of the extent to which processes associated with the 2015 El Nio event are consistent with current El Nio and Southern Oscillation theories.