As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and...As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China.展开更多
In the conceptual framework of adaptation policy assessment to climate change, adaptation measures can be categorized as two groups:facilitation and implementation. Facilitation measures refers to activities that enh...In the conceptual framework of adaptation policy assessment to climate change, adaptation measures can be categorized as two groups:facilitation and implementation. Facilitation measures refers to activities that enhance adaptive capacity, while implementation refers to activities that actually avoid adverse climate impacts on a system by reducing its exposure or sensitivity to climatic hazards, or by moderating relevant non-climatic factors. This paper aims to establish a matrix of implementation measures of adaptation to climate change, through four different ways how adaptation can influencc the relevant elements of climate change. reducing the exposure, reducing the sensitivity, alleviating the adverse impacts and reducing the negative non-climatic factors, and then further discuss the particular implementation measures of adaptation to climate change, through application studies on the selected sub-systems, intend to organize the disordered implementation measures in existent, and put forward some new measures under the guidance of this matrix, which could enrich and promote the system and content of implementation measures of adaptation.展开更多
Global climate change has become a major concern worldwide. The spatio-temporal characteristics of net ecosystem productivity(NEP), which represents carbon sequestration capacity and directly describes the qualitative...Global climate change has become a major concern worldwide. The spatio-temporal characteristics of net ecosystem productivity(NEP), which represents carbon sequestration capacity and directly describes the qualitative and quantitative characteristics of carbon sources/sinks(C sources/sinks), are crucial for increasing C sinks and reducing C sources. In this study, field sampling data, remote sensing data, and ground meteorological observation data were used to estimate the net primary productivity(NPP) in the Inner Mongolia grassland ecosystem(IMGE) from 2001 to 2012 using a light use efficiency model. The spatio-temporal distribution of the NEP in the IMGE was then determined by estimating the NPP and soil respiration from 2001 to 2012. This research also investigated the response of the NPP and NEP to the main climatic variables at the spatial and temporal scales from 2001 to 2012. The results showed that most of the grassland area in Inner Mongolia has functioned as a C sink since 2001 and that the annual carbon sequestration rate amounts to 0.046 Pg C/a. The total net C sink of the IMGE over the 12-year research period reached 0.557 Pg C. The carbon sink area accounted for 60.28% of the total grassland area and the sequestered 0.692 Pg C, whereas the C source area accounted for 39.72% of the total grassland area and released 0.135 Pg C. The NPP and NEP of the IMGE were more significantly correlated with precipitation than with temperature, showing great potential for C sequestration.展开更多
基金The research is funded by National Natural Science Foundation (40231016) and Canadian International Development Agency (CIDA).
文摘As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China.
基金supported by National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China in the 11th Five-Year Plan (Grant No.2007BAC03A12)
文摘In the conceptual framework of adaptation policy assessment to climate change, adaptation measures can be categorized as two groups:facilitation and implementation. Facilitation measures refers to activities that enhance adaptive capacity, while implementation refers to activities that actually avoid adverse climate impacts on a system by reducing its exposure or sensitivity to climatic hazards, or by moderating relevant non-climatic factors. This paper aims to establish a matrix of implementation measures of adaptation to climate change, through four different ways how adaptation can influencc the relevant elements of climate change. reducing the exposure, reducing the sensitivity, alleviating the adverse impacts and reducing the negative non-climatic factors, and then further discuss the particular implementation measures of adaptation to climate change, through application studies on the selected sub-systems, intend to organize the disordered implementation measures in existent, and put forward some new measures under the guidance of this matrix, which could enrich and promote the system and content of implementation measures of adaptation.
基金National Basic Research Program of China(973 Program),No.2015CB452702,No.2012CB416906National Natural Science Foundation of China,No.41571098,No.41371196National Key Technology R&D Program,No.2013BAC03B04
文摘Global climate change has become a major concern worldwide. The spatio-temporal characteristics of net ecosystem productivity(NEP), which represents carbon sequestration capacity and directly describes the qualitative and quantitative characteristics of carbon sources/sinks(C sources/sinks), are crucial for increasing C sinks and reducing C sources. In this study, field sampling data, remote sensing data, and ground meteorological observation data were used to estimate the net primary productivity(NPP) in the Inner Mongolia grassland ecosystem(IMGE) from 2001 to 2012 using a light use efficiency model. The spatio-temporal distribution of the NEP in the IMGE was then determined by estimating the NPP and soil respiration from 2001 to 2012. This research also investigated the response of the NPP and NEP to the main climatic variables at the spatial and temporal scales from 2001 to 2012. The results showed that most of the grassland area in Inner Mongolia has functioned as a C sink since 2001 and that the annual carbon sequestration rate amounts to 0.046 Pg C/a. The total net C sink of the IMGE over the 12-year research period reached 0.557 Pg C. The carbon sink area accounted for 60.28% of the total grassland area and the sequestered 0.692 Pg C, whereas the C source area accounted for 39.72% of the total grassland area and released 0.135 Pg C. The NPP and NEP of the IMGE were more significantly correlated with precipitation than with temperature, showing great potential for C sequestration.