期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于分位数映射法的黑河上游气候模式降水误差订正 被引量:16
1
作者 雷华锦 马佳培 +3 位作者 李弘毅 王建 邵东航 赵宏宇 《高原气象》 CSCD 北大核心 2020年第2期266-279,共14页
区域气候模式降水弥补了高寒山区气象站点稀少的缺陷,是水文模拟的重要驱动变量。然而,高寒山区模式输出降水的总量和频率都存在较大不确定性。因此,改进了用于降水频率纠正的分位数映射法(Quantile Mapping,QM),对中尺度数值预报模式(W... 区域气候模式降水弥补了高寒山区气象站点稀少的缺陷,是水文模拟的重要驱动变量。然而,高寒山区模式输出降水的总量和频率都存在较大不确定性。因此,改进了用于降水频率纠正的分位数映射法(Quantile Mapping,QM),对中尺度数值预报模式(Weather Research and Forecasting model,WRF)模拟的黑河上游日降水输出数据进行误差订正。选取第95分位和第98分位降水量为阈值,选择2004-2009年为建模时段,2010-2013年为验证时段,使用分段拟合的方法建立传递函数,侧重于对极端降水进行单独订正。研究结果表明:该方法不仅对降水空间分布有明显的改善,对极端降水也有很好的订正效果。订正前模式模拟日降水与台站之间的均方根误差为3.41 mm·d^-1,绝对偏差为115.67 mm·y^-1,订正后均方根误差减少为3.11 mm·d^-1,绝对偏差有明显改善,为60.3 mm·y^-1。订正后流域内年降水空间分布更加合理,年降水量也更接近于观测降水插值结果,其空间相关系数由0.74改善为0.94。春、夏季订正效果优于秋、冬季,其中夏季订正效果较为明显,订正前降水偏差百分比在-0.1~0.1以内的区域面积仅占流域总面积的28%,而订正后占比增加至66%。同时,该方法对极端降水有较好的订正效果,减小了日降水强度(SDII)和极强降水量(R99p)的模拟偏差,订正后的第95分位模拟降水与观测降水插值的相关系数由0.15提高到0.48。本研究为站点稀少的黑河上游提供了一种更有效的误差订正方案,有利于为寒区水文研究获取更精确的降水数据。 展开更多
关键词 黑河上游 气候模式降水 分位数映射法 误差订正
下载PDF
Climate Change over China in the 21st Century as Simulated by BCC_CSM1.1-RegCM4.0 被引量:79
2
作者 GAO Xue-Jie WANG Mei-Li Filippo GIORGI 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第5期381-386,共6页
Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission sce... Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations. 展开更多
关键词 climate change regional climate model RCP scenarios China
下载PDF
Simulation of Extreme Climate Events over China with Different Regional Climate Models 被引量:9
3
作者 FENG Jin-Ming WANG Yong-Li FU Cong-Bin 《Atmospheric and Oceanic Science Letters》 2011年第1期47-56,共10页
During phase II of the Regional Climate Model Inter-comparison Project (RMIP) for Asia, the Asian climate was estimated from July 1988 to December 1998 using six climate models. In this paper, the abilities of six c... During phase II of the Regional Climate Model Inter-comparison Project (RMIP) for Asia, the Asian climate was estimated from July 1988 to December 1998 using six climate models. In this paper, the abilities of six climate models to simulate several important ex- treme climate events in China during the last years of the last century were analyzed. The modeled results for the intensity of the precipitation anomaly over the Yang- tze-Huaihe Valley during the summers of 1991 and 1998 were weaker than the observed values. The positive pre- cipitation anomaly responsible for a catastrophic flood in 1991 was well reproduced in almost all simulation results, but the intensity and range of the precipitation anomaly in 1998 were weaker in the modeled results. The spatial dis- tribution of extreme climate events in 1997, when severe drought affected North China and flood impacted South China, was reproduced by most of the regional models because the anomaly of the large-scale background field was well-simulated, despite poor simulation of high temperature areas in the north during the summer by all models. 展开更多
关键词 RMIP extreme climate event FLOOD DROUGHT spatial distribution
下载PDF
East China Summer Rainfall during ENSO Decaying Years Simulated by a Regional Climate Model 被引量:4
4
作者 ZENG Xian-Feng LI Bo +2 位作者 FENG Lei LIU Xiao-Juan ZHOU Tian-Jun 《Atmospheric and Oceanic Science Letters》 2011年第2期91-97,共7页
The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dyna... The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP), in simulating rainfall anomalies during the ENSO decaying summers from 1982 to 2002 was evalu- ated. The added value of rainfall simulation relative to reanalysis data and the sources of model bias were studied. Results showed that the model simulated rainfall anomalies moderately well. The model did well at capturing the above-normal rainfall along the Yangtze River valley (YRV) during E1 Nifio decaying summers and the below and above-normal rainfall centers along the YRV and the Huaihe River valley (HRV), respectively, during La Nifia decaying summers. These features were not evident in rainfall products derived from the reanalysis, indicating that rainfall simulation did add value. The main limitations of the model were that the simulated rainfall anomalies along the YRV were far stronger and weaker in magnitude than the observations during E1 Nifio decaying summers and La Nifia decaying summers, respectively. The stronger magnitude above-normal rainfall during E1 Nifio decaying summers was due to a stronger northward transport of water vapor in the lower troposphere, mostly from moisture advection. An artificial, above-normal rainfall center was seen in the region north to 35°N, which was associated with stronger northward water vapor transport. Both lower tropospheric circulation bias and a wetter model atmosphere contributed to the bias caused by water vapor transport. There was a stronger southward water vapor transport from the southern boundary of the model during La Nifia decaying summers; less remaining water vapor caused anomalously weaker rainfall in the model as compared to observations. 展开更多
关键词 East China rainfall ENSO decaying summers regional climate model water vapor
下载PDF
Regional Climate Change and Uncertainty Analysis based on Four Regional Climate Model Simulations over China 被引量:11
5
作者 WU Jia GAO Xue-Jie +1 位作者 XU Yin-Long PAN Jie 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期147-152,共6页
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc... Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation). 展开更多
关键词 climate change regional climate model ENSEMBLE China
下载PDF
Dynamical Downscaling of the Twentieth Century Reanalysis for China:Climatic Means during 1981–2010 被引量:1
6
作者 KONG Xiang-Hui BI Xun-Qiang 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期166-173,共8页
This study presents a dynamically downscaled climatology over East Asia using the non-hydrostatic Weather Research and Forecasting (WRF) model, forced by the Twentieth Century Reanalysis (20CR-v2). The whole exper... This study presents a dynamically downscaled climatology over East Asia using the non-hydrostatic Weather Research and Forecasting (WRF) model, forced by the Twentieth Century Reanalysis (20CR-v2). The whole experiment is a 111-year (1900--2010) continuous run at 50 km horizontal resolution. Comparisons of climatic means and seasonal cycles among observations, 20CR-v2, and WRF results during the last 30 years (1981-2010) in China are presented, with a focus on sur- face air temperature and precipitation in both summer and winter. The WRF results reproduce the main features of surface air temperature in the two seasons in China, and outperform 20CR-v2 in regional details due to topog- raphic forcing. Summer surface air temperature biases are reduced by as much as 1℃-2℃. For precipitation, the simulation results reproduce the decreasing pattern from Southeast to Northwest China in winter. For summer rainfall, the WRF simulation results reproduce the correct magnitude and position of heavy rainfall around the southeastern coastal area, and are better than 20CR-v2. One of the significant improvements is that an unrealistic center of summer precipitation in Southeast China present in 20CR-v2 is eliminated. However, the simulated results underestimate winter surface air temperature in northern China and winter rainfall in some regions in southeastern China. The mean seasonal cycles of surface air tempera- ture and precipitation are captured well over most of sub-regions by the WRF model. 展开更多
关键词 regional climate model WRF surface air temperature PRECIPITATION
下载PDF
The Extreme Summer Precipitation over East China during 1982-2007 Simulated by the LASG/IAP Regional Climate Model 被引量:6
7
作者 LIU Jing-Wei LI Bo +2 位作者 ZHOU Tian-Jun ZENG Xian-Feng FENG Lei 《Atmospheric and Oceanic Science Letters》 2012年第1期62-67,共6页
The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probabil... The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation. 展开更多
关键词 regional climate simulation extreme precipi- tation East China CREM
下载PDF
Change in Extreme Climate Events over China Based on CMIP5 被引量:7
8
作者 XU Ying WU Jie +3 位作者 SHI Ying ZHOU Bo-Tao LI Rou-Ke WU Jia 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第4期185-192,共8页
The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percen... The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario. 展开更多
关键词 CMIP5 extreme climate index climate projection UNCERTAINTY
下载PDF
FUTURE CHANGE OF PRECIPITATION EXTREMES OVER THE PEARL RIVER BASIN FROM REGIONAL CLIMATE MODELS
9
作者 杜尧东 杨红龙 +1 位作者 曹超雄 刘蔚琴 《Journal of Tropical Meteorology》 SCIE 2016年第1期57-65,共9页
Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climat... Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climate parameters,a set of mean precipitation,wet day frequency,and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21 st century.Meanwhile the return values of precipitation intensity with an average return of 5,10,20,and 50 years are also used to assess the expected changes in precipitation extremes events in this study.The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5.The annual,spring and winter average precipitation decreases while the summer and autumn average precipitation increases.The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase.The wet day percentiles(q90 and q95) also increase,indicating that precipitation extremes intensity will increase in the future.Meanwhile,the5-year return value tends to increase by 30%-45%in the basins of Liujiang River,Red Water River,Guihe River and Pearl River Delta region,where the 5-year return value of future climate corresponds to the 8-to 10-year return value of the present climate,and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080 s under RCP8.5,which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events. 展开更多
关键词 climate change RCPs scenario Pearl River Basin regional climate model RegCM4
下载PDF
STUDY OF THE EFFECTS OF REDUCING SYSTEMATIC ERRORS ON MONTHLY REGIONAL CLIMATE DYNAMICAL FORECAST
10
作者 曾新民 席朝笠 《Journal of Tropical Meteorology》 SCIE 2009年第1期102-105,共4页
A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated fo... A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast. 展开更多
关键词 climatology monthly regional climate dynamical forecast systematic errors
下载PDF
A high resolution simulation of climate change over China 被引量:42
11
作者 GAO XueJie SHI Ying Filippo GIORGI 《Science China Earth Sciences》 SCIE EI CAS 2011年第3期462-472,共11页
Multi-decadal high resolution climate change simulations over East Asia were performed by using The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3), nested within the NA... Multi-decadal high resolution climate change simulations over East Asia were performed by using The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3), nested within the NASA/NCAR global model FvGCM/CCM3. Two sets of simulations were conducted at 20-km grid spacings, one for present day (1961-1990) and one for the future climate (2071-2100, IPCC A2 scenario). Simulations of present climate conditions over China by RegCM3 and FvGCM were compared against observations to assess the model performance. Results showed that both models repro- duced the observed spatial structure of 500 hPa height, surface air temperature and precipitation. Compared with FvGCM, RegCM3 provided increasing spatial detail of surface variables. Furthermore, RegCM3 improved the simulation of monsoon precipitation over the region. Changes in the mean temperature and precipitation were analyzed and compared between the two models. Significant warming in the end of the 21st century was simulated by both models in December-January-February (DJF), June-July-August (JJA), and the annual mean. In DJF, greater warming was simulated by FvGCM over Northeast and Northwest China, as well as the Tibetan Plateau, compared with RegCM. In JJA, RegCM3 simulated greater warming over northern China, Inner Mongolia, Northwest China, and the Tibetan Plateau. Simulated changes in DJF precipitation showed similar spatial patterns between the two models. In JJA, while FvGCM projected a prevailing increase of monsoon precipitation over China, which is in agreement with other global models, RegCM3 projected extended areas of decreased precipitation. Changes in the variability for annual mean temperature and precipitation also are presented. 展开更多
关键词 climate change regional climate model China
原文传递
Can the tropical storms originated from the Bay of Bengal impact the precipitation and soil moisture over the Tibetan Plateau? 被引量:6
12
作者 XIAO ZhiXiang DUAN AnMin 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第6期915-928,共14页
This study investigates the impacts of tropical storms originated from the Bay of Bengal(BOBTSs) on the precipitation and soil moisture over the Tibetan Plateau(TP) in April–June(AMJ) and September–December(SOND) du... This study investigates the impacts of tropical storms originated from the Bay of Bengal(BOBTSs) on the precipitation and soil moisture over the Tibetan Plateau(TP) in April–June(AMJ) and September–December(SOND) during 1981–2011 based on the best track dataset provided by Joint Typhoon Warning Centre(JTWC). Results indicate that there are about 1.35 BOBTSs influence the TP in each year and most of them occurred in May and October, and the BOBTSs in AMJ influence the TP with larger extension and higher latitudes than those in SOND. The maximum regional precipitation induced by the BOBTSs accounts for more than 50% for the total precipitation in the corresponding month and about 20% for the season. Further analysis reveals that the surface soil moisture anomalies induced by the BOBTSs can persist only 20–25 days in AMJ, and the case is also true for the snow depth in SOND. Numerical simulations by using the regional climate model of Weather Research and Forecasting(WRF) suggest that the soil moisture anomalies in the sub-surface can last 2 months whereas for the surface it can persist only about 20 days, which agrees well with the observation analysis. Overall, the effect of the preceding BOBTSs on the snow depth and soil moisture anomalies over the TP cannot maintain to summer, and there is no robust connection between the BOBTSs and summer precipitation anomalies in East China. Moreover, since the mid-1990 s, the spring rainfall induced by the BOBTSs over the TP seems to be enhanced to a certain degree because of the intensified BOBTSs. 展开更多
关键词 tropical storms Bay of Bengal the Tibetan Plateau soil moisture snow depth WRF
原文传递
Representation of global precipitation anomalies using four major climate patterns
13
作者 CHEN Ji CHUNG ChiHang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第5期927-934,共8页
This study aims at finding the dominant climate patterns that influence the precipitation anomalies for different regions over the world. To this end, a multiple linear regression model is employed to represent the im... This study aims at finding the dominant climate patterns that influence the precipitation anomalies for different regions over the world. To this end, a multiple linear regression model is employed to represent the impact of four major climate patterns(El Ni?o-Southern Oscillation(ENSO), Indian Ocean Dipole(IOD), Arctic Oscillation(AO) and Antarctic Oscillation(AAO)) on the global precipitation anomalies. The normalized climate pattern indexes and normalized precipitation anomalies are used in the regression model. For the Northern Hemisphere, the three predictors used are the normalized NINO3.4 index(representing ENSO), normalized DMI(representing IOD) and normalized AO index; for the Southern Hemisphere, also three indexes are used as three predictors, and the normalized AO index is replaced by the normalized AAO index. The influences brought by each climate pattern can be represented by the magnitude of the corresponding regression coefficients, and the dominant climate patterns are those with the largest magnitude. The study results show that the precipitation anomalies in the northern part of South America and the northwestern part of Southeast Asia are mainly influenced by ENSO. The precipitation anomalies in East Africa and the southwestern part of Southeast Asia are mainly influenced by IOD. The precipitation anomalies in Europe and west coast of North America are mainly influenced by AO; the precipitation anomalies in the eastern part and southern part of South America, southern part of Africa, and the northeastern Australia are mainly influenced by AAO. These findings are consistent with the general understanding on the teleconnection features of the four climate patterns. Further, the regression model can be used for predicting precipitation anomalies through use of these major climate patterns. 展开更多
关键词 normalized ENSO Southeast representing Australia southwestern Arctic trained instead brought
原文传递
Asymmetrical response of summer rainfall in East Asia to CO_(2)forcing 被引量:3
14
作者 Se-Yong Song Sang-Wook Yeh +4 位作者 Soon-Il An Jong-Seong Kug Seung-Ki Min Seok-Woo Son Jongsoo Shin 《Science Bulletin》 SCIE EI CSCD 2022年第2期213-222,M0004,共11页
Understanding the regional hydrological response to varying CO_(2)concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall ch... Understanding the regional hydrological response to varying CO_(2)concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall change in East Asia in a changing CO_(2)pathway, we used the Community Earth System Model(CESM) with28 ensemble members in which the CO_(2)concentration increases at a rate of 1% per year until its quadrupling peak, i.e., 1468 ppm(ramp-up period), followed by a decrease of 1% per year until the present-day climate conditions, i.e., 367 ppm(ramp-down period). Although the CO_(2)concentration change is symmetric in time, the amount of summer rainfall anomaly in East Asia is increased 42% during a rampdown period than that during a ramp-up period when the two periods of the same CO_(2)concentration are compared. This asymmetrical rainfall response is mainly due to an enhanced El Ni?o-like warming pattern as well as its associated increase in the sea surface temperature in the western North Pacific during a ramp-down period. These sea surface temperature patterns enhance the atmospheric teleconnections and the local meridional circulations around East Asia, resulting in more rainfall over East Asia during a ramp-down period. This result implies that the removal of CO_(2)does not guarantee the return of regional rainfall to the previous climate state with the same CO_(2)concentration. 展开更多
关键词 CO_(2)concentration East Asian summer monsoon Asymmetric rainfall El Ni?o-like warming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部