Distribution of vegetation is closely coupled with climate; the climate controls distribution of vegetation and the vegetation type reflects regional climates. To reveal vegetation_climate relationships is the foundat...Distribution of vegetation is closely coupled with climate; the climate controls distribution of vegetation and the vegetation type reflects regional climates. To reveal vegetation_climate relationships is the foundation for understanding the vegetation distribution and theoretically serving vegetation regionalization. Vegetation regionalization is a theoretical integration of vegetation studies and provides a base for physiogeographical regionalization as well as agriculture and forestry regionalization. Based on a brief historical overview on studies of vegetation_climate relationships and vegetation regionalization conducted in China, we review the principles, bases and major schemes of previous vegetation regionalization and discuss on several contentious boundaries of vegetation zones in the present paper. We proposed that, under the circumstances that the primary vegetation has been destroyed in most parts of China, the division of vegetation zones/regions should be based on the distribution of primary and its secondary vegetation types and climatic indices that delimit distribution of the vegetation types. This not only reveals the closed relationship between vegetation and climate, but also is feasible practically. Although there still are divergence of views on the name and their boundaries of the several vegetation zones, it is commonly accepted that there are eight major vegetation regions in China, i.e. cold temperate needleleaf forest region, temperate needleleaf and broadleaf mixed forest region, warm temperate deciduous broadleaf forest region, subtropical evergreen broadleaf forest region, tropical monsoon forest and rain forest region, temperate steppe region, temperate desert region, and Qinghai_Xizang (Tibetan) Plateau high_cold vegetation region. Analyzing characteristics of vegetation and climate of major vegetation boundaries, we suggested that: 1) Qinling Mountain_Huaihe River line is an important arid/humid climatic, but not a thermal climatic boundary, and thus can not also be regarded as the northern limit of the subtropical vegetation zone; 2) the northern limit of subtropical vegetation zone in China is along the northern coast of the Yangtze River, from Hangzhou Bay, via Taihu Lake, Xuancheng and Tongling in Anhui Province, through by southern slope of the Dabie Mountains, to Wuhan and its west, coinciding with a warmth index ( WI ) value of 130-140 ℃·month; 3) the tropical region is limited in a very small area in southeastern Hainan Island and southern edge of Taiwan Island; and 4) considering a significant difference in climates between the southern and northern parts of the warm temperate zone, we suggested that the warm temperate zone in China is divided into two vegetation regions, deciduous broadleaf woodland region and deciduous and evergreen broadleaf mixed forest region, the Qinling Mountain_Huaihe River line being as their boundary. We also claimed that the zonal vegetation in North China is deciduous broadleaf woodland. Finally, we emphasized the importance of dynamic vegetation regionalization linked to climate changes.展开更多
The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static clos...The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static closed chamber technique in a typical broad-leaved/Korean pine mixed forest area on the northern slope of Changbai Mountain, Jilin Province, China. The experiment was carried out through the day and night in the growing season (from June to September) in situ and sample gas was analyzed by a gas chromatograph. Results showed that the forest floor was a large net source of carbon, and soil CO2 fluxes had an obvi-ous law of seasonal and diel variation. The soil CO2 flux of broad-leaved/Korean pine mixed forest was in the range of 0.302.42 mmol穖-2穝-1 with the mean value of 0.98 mmol穖-2穝-1. An examination on the seasonal pattern of soil CO2 emission suggested that the variability in soil CO2 flux could be correlated with variations in soil temperature, and the maximum of mean CO2 flux occurred in July ((1.27±23%) mmol穖-2穝-1) and the minimum was in September ((0.50±28%) mmol穖-2穝-1). The fluctuations in diel soil CO2 flux were also correlated with changes in soil temperature; however, there existed a factor for a time lag. Soil CO2 flux from the forest floor was strongly related to soil temperature and had the highest correlation with temperature at 6-cm depth of soil. Q10 values based on air temperature and soil temperature of different soil depths were at the ranges of 2.09–3.40.展开更多
There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely ...There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial展开更多
In order to improve the understanding of the role of a canopy opening/gap on the physical environments in a secondary forest in Northeastern China, a case study was conducted in and around a small irregular gap in a m...In order to improve the understanding of the role of a canopy opening/gap on the physical environments in a secondary forest in Northeastern China, a case study was conducted in and around a small irregular gap in a montane secondary forest. The secondary forest, which was severely disturbed by human beings about 50 years ago, was dominated by Quercus mongolica and Fraxinus rhynchophyllaan. Temporal variation in photosynthetic photon flux density (PPFD), air temperature (TA) at 10 cm above the ground, soil temperature (Ts) and soil water content (SWC) at top-layer (0-15 cm) and sub-layer (15-30 cm) were measured from May to September after the second year since the formation of the small gap (the ratios of gap diameter to stand height were less than 0.5) in 2006 respectively. Results indicated that the highest value of PPFD occurred at the northern edge of the gap, particularly at the beginning of the growing season in May. On sunny days, the highest value of PPFD appeared earlier than that on overcast days. Maximum and mean values of TAwere higher in the northern part of the gap, and the minimum values of TAwere at the southern edge of the gap. Soil temperature varied obviously in the gap with the range from 1 to 8 ℃. Maximum values of Ts occurred at the northern part of the gap, which was significantly correlated with the maximum values of TA (R = 0.735, P〈0.05). SWC was higher in the top-layer (0-15 cm) than that in sub-layer (15-30 cm), but the difference of them was not significant (p〉0.05), which might be attributed to the small gap size and the effects of aboveground vegetations. From these results, the maximum of PPFD in the study area occurred at the northern part of the gap, which was consistent with the results observed in north hemisphere, but the occurrence time varied with the differences of the latitudes. The highest values of air and soil temperatures also occurred in the northern part of the gap because they were affected by the radiation. However, the variation of temperature in July was different from other months due to the influence of gap size. And the values of soil water content were neither higher in the gap in the wet season nor lower in the dry season, which might be affected by the gap size and topography the gap located. The variations of light, soil and air temperatures, and soil moisture in this small irregular gap might be related to the effects of the micro-site, which affects the regeneration of plant species.展开更多
By using,summer temperature data in 26 stations from 1951 to 2003, the variation characteristics of summer temperature in Northeast China (NET) were analyzed based on the background of climate wanning. The results s...By using,summer temperature data in 26 stations from 1951 to 2003, the variation characteristics of summer temperature in Northeast China (NET) were analyzed based on the background of climate wanning. The results showed that the warming in summer was 0.15~C/10a in Northeast China, which was higher than that on the global, Northern Hemisphere or Northeast Asia scale in the recent 50 years. The responses of NET to global warming were shown in 3 aspects mainly. Firstly, it became warm and the average temperature increased in summer; secondly, the temperature variability increased, which displayed the increase of climatic instability; thirdly, the disaster of low temperature decreased and high temperature damage increased obviously, but the disaster of low temperature still existed in some areas under global warming background, which would be worthy of notice further.展开更多
Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorolo...Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorological stations are used. Two temperature indicators (monthly mean and monthly maximum mean) and three precipitation indicators (monthly total, monthly maximum consecutive 5-day precipitation, and monthly dry days) are analyzed. Tendencies in all five indicators can be observed. Many stations show significant positive trends (above the 90% confidence level) for monthly mean temperatures and monthly maximum mean temperatures. For all months, a significant increase in temperature from 1961 to 2007 can be observed in the entire basin with the coastal area in particular. Positive trends of precipitation extremes can be observed from January to March. Negative trends are detected from September to November. The number of dry days in October increased significantly at 40% of all meteorological stations. Stations with changes of monthly precipitation extremes are scattered over the Zhujiang River Basin. An aggregation of heat waves and droughts can be detected which is accompanied by significant increases of temperature extremes and the negative tendencies in precipitation extremes. The detection of tendencies in climate station density. extremes essentially relies on a good data quality and high展开更多
The results by statistical analysis of black body Temperature (TBB) pentad mean from the Japanese GMS in the period of May to August, 1980-2002, show that the summer monsoon index (SMI) is defined to be the pentad...The results by statistical analysis of black body Temperature (TBB) pentad mean from the Japanese GMS in the period of May to August, 1980-2002, show that the summer monsoon index (SMI) is defined to be the pentad mean TBB≤273 K. Its intensity includes three levels: TBB〉268 K for weak monsoon, 268 KETBB〉263 K for normal monsoon and TBB≤263K for strong monsoon over the South China sea and East Asia. In the meantime, a diagnostic method using TBB pentad anomaly is also introduced to help identify monsoon intensity. The SMI is used to run statistical analyses of the initial onset of the monsoon and its pentad variations with the year and month. A fairly close relationship is found between pentad monsoon activity and heavy rainfall periods in the two typical flood years of 1994 and 1998, which resulted from heavy rainfall over the Yangtze River basin and south China.展开更多
Using the daily maximum and minimum temperature dataset from 128 stations from 1960 to 2004 in Northwest China,daily extreme high temperature(EHT)and extreme low temperature(ELT)thresholds were deter-mined by centesim...Using the daily maximum and minimum temperature dataset from 128 stations from 1960 to 2004 in Northwest China,daily extreme high temperature(EHT)and extreme low temperature(ELT)thresholds were deter-mined by centesimal method for different stations at first,then yearly EHT and ELT events were counted up in differ-ent stations,and the characteristics of their spatio-temporal distribution were diagnosed at last.The study drew follow-ing conclusions:1)The consistent anomaly distribution characteristic was the most important mode of the EHT and ELT events in Northwest China.2)The spatial distribution of the EHT and ELT events can be divided into five sub-regions,namely,the north of Qinghai and west of Gansu,the north of Xinjiang,the south of Xinjiang,the east of Northwest China and the south of Qinghai.3)The EHT events showed remarkable increasing trend in all of five sub-regions,but only in the north of Qinghai and west of Gansu area,sudden change phenomenon occurred;the ELT events showed decreasing trend in all of five sub-regions,and sudden change phenomenon occurred in Northwest China except for south of Qinghai.4)In all of five sub-regions the EHT events showed remarkable 12-14yr period os-cillation,and the ELT event showed significant 13-15yr and 7-8yr period oscillation.5)The EHT and ELT events displayed remarkable positive and negative responses to regional warming of Northwest China respectively.展开更多
Daily precipitation for 1960-2011 and maximum/minimum temperature extremes for 1960-2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyze...Daily precipitation for 1960-2011 and maximum/minimum temperature extremes for 1960-2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyzed with a main focus on the trends and variabilities of daily extreme occurrences.Results show significant increases in daily extreme warm temperatures and decreases in daily extreme cold temperatures,defined as the number of days in which daily maximum temperature (Tmax) and daily minimum temperature (Tmin) are greater than the 90th percentile and less than thel0th percentile,respectively.Generally,the trend magnitudes are larger in indices derived from Tmin than those from Tmax.Trends of percentile-based precipitation indices show distinct spatial patterns with increases in heavy precipitation events,defined as the top 95th percentile of daily precipitation,in westem and northeastern China and in the low reaches of the Yangtze River basin region,and slight decreases in other areas.Light precipitation,defined as the tail of the 5th percentile of daily precipitation,however,decreases in most areas.The annual maximum consecutive dry days (CDD) show an increasing trend in southem China and the middle-low reach of the Yellow River basin,while the annual maximum consecutive wet days (CWD) displays a downtrend over most regions except western China.These indices vary significantly with regions and seasons.Overall,occurrences of extreme events in China are more frequent,particularly the night time extreme temperature,and landmasses in China become warmer and wetter.展开更多
Air temperature and snow cover variability are sensitive indicators of climate change. This study was undertaken to forecast and quantify the potential streamflow response to climate change in the Jhelum River basin. ...Air temperature and snow cover variability are sensitive indicators of climate change. This study was undertaken to forecast and quantify the potential streamflow response to climate change in the Jhelum River basin. The implications of air temperature trends (+0.11℃decade) reported for the entire north-west Himalaya for past century and the regional warming (+0.7℃/decade) trends of three observatories analyzed between last two decades were used for future projection of snow cover depletion and stream flow. The streamflow was simulated and validated for the year 2007-2008 using snowmelt runoff model (SRM) based on in-situ temperature and precipitation with remotely sensed snow cover area. The simulation was repeated using higher values of temperature and modified snow cover depletion curves according to the assumed future climate. Early snow cover depletion was observed in the basin in response to warmer climate. The results show that with the increase in air temperature, streamfiow pattern of Jhelum will be severely affected. Significant redistribution of streamflow was observed in both the scenarios. Higher discharge was observed during spring-summer months due to early snowmelt contribution with water deficit during monsoon months. Discharge increased by 5%-40% during the months of March to May in 2030 and 2050. The magnitude of impact of air temperature is higher in the scenario-2 based on regional warming. The inferences pertaining to change in future streamflow pattern can facilitate long term decisions and planning concerning hydro-power potential, waterresource management and flood hazard mapping in the region.展开更多
Based on temperature data in Guangdong in the past 50years, statistical methods are used to analyze the characteristics of temperature in spatial and temporal variation. The results show that land surface temperature ...Based on temperature data in Guangdong in the past 50years, statistical methods are used to analyze the characteristics of temperature in spatial and temporal variation. The results show that land surface temperature warms by 0.16℃/1 0a in Guangdong. The range of warming was lower than the average of nationwide and global land surface. Furthermore, the temperature has a larger increase tendency in winter and spring and coastal areas than in summer and autumn and inland areas. Climate zones move towards the north obviously. North tropical zone is expanding, south subtropical zone is reducing and central subtropical zone is relatively stable. Under the global climate warming, characteristics of climate warming in Guangdong were influenced by atmosphere general circulation, sea surface temperature and human activities etc.展开更多
文摘Distribution of vegetation is closely coupled with climate; the climate controls distribution of vegetation and the vegetation type reflects regional climates. To reveal vegetation_climate relationships is the foundation for understanding the vegetation distribution and theoretically serving vegetation regionalization. Vegetation regionalization is a theoretical integration of vegetation studies and provides a base for physiogeographical regionalization as well as agriculture and forestry regionalization. Based on a brief historical overview on studies of vegetation_climate relationships and vegetation regionalization conducted in China, we review the principles, bases and major schemes of previous vegetation regionalization and discuss on several contentious boundaries of vegetation zones in the present paper. We proposed that, under the circumstances that the primary vegetation has been destroyed in most parts of China, the division of vegetation zones/regions should be based on the distribution of primary and its secondary vegetation types and climatic indices that delimit distribution of the vegetation types. This not only reveals the closed relationship between vegetation and climate, but also is feasible practically. Although there still are divergence of views on the name and their boundaries of the several vegetation zones, it is commonly accepted that there are eight major vegetation regions in China, i.e. cold temperate needleleaf forest region, temperate needleleaf and broadleaf mixed forest region, warm temperate deciduous broadleaf forest region, subtropical evergreen broadleaf forest region, tropical monsoon forest and rain forest region, temperate steppe region, temperate desert region, and Qinghai_Xizang (Tibetan) Plateau high_cold vegetation region. Analyzing characteristics of vegetation and climate of major vegetation boundaries, we suggested that: 1) Qinling Mountain_Huaihe River line is an important arid/humid climatic, but not a thermal climatic boundary, and thus can not also be regarded as the northern limit of the subtropical vegetation zone; 2) the northern limit of subtropical vegetation zone in China is along the northern coast of the Yangtze River, from Hangzhou Bay, via Taihu Lake, Xuancheng and Tongling in Anhui Province, through by southern slope of the Dabie Mountains, to Wuhan and its west, coinciding with a warmth index ( WI ) value of 130-140 ℃·month; 3) the tropical region is limited in a very small area in southeastern Hainan Island and southern edge of Taiwan Island; and 4) considering a significant difference in climates between the southern and northern parts of the warm temperate zone, we suggested that the warm temperate zone in China is divided into two vegetation regions, deciduous broadleaf woodland region and deciduous and evergreen broadleaf mixed forest region, the Qinling Mountain_Huaihe River line being as their boundary. We also claimed that the zonal vegetation in North China is deciduous broadleaf woodland. Finally, we emphasized the importance of dynamic vegetation regionalization linked to climate changes.
基金This research was supported by National Natural Science Foundation of China (Grant No. 40171092).
文摘The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static closed chamber technique in a typical broad-leaved/Korean pine mixed forest area on the northern slope of Changbai Mountain, Jilin Province, China. The experiment was carried out through the day and night in the growing season (from June to September) in situ and sample gas was analyzed by a gas chromatograph. Results showed that the forest floor was a large net source of carbon, and soil CO2 fluxes had an obvi-ous law of seasonal and diel variation. The soil CO2 flux of broad-leaved/Korean pine mixed forest was in the range of 0.302.42 mmol穖-2穝-1 with the mean value of 0.98 mmol穖-2穝-1. An examination on the seasonal pattern of soil CO2 emission suggested that the variability in soil CO2 flux could be correlated with variations in soil temperature, and the maximum of mean CO2 flux occurred in July ((1.27±23%) mmol穖-2穝-1) and the minimum was in September ((0.50±28%) mmol穖-2穝-1). The fluctuations in diel soil CO2 flux were also correlated with changes in soil temperature; however, there existed a factor for a time lag. Soil CO2 flux from the forest floor was strongly related to soil temperature and had the highest correlation with temperature at 6-cm depth of soil. Q10 values based on air temperature and soil temperature of different soil depths were at the ranges of 2.09–3.40.
文摘There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial
基金This research was supported by National Natural Science Foundation of China (30671669) and "the 100-Young-Researcher Project" of Chinese,Academy of Sciences.
文摘In order to improve the understanding of the role of a canopy opening/gap on the physical environments in a secondary forest in Northeastern China, a case study was conducted in and around a small irregular gap in a montane secondary forest. The secondary forest, which was severely disturbed by human beings about 50 years ago, was dominated by Quercus mongolica and Fraxinus rhynchophyllaan. Temporal variation in photosynthetic photon flux density (PPFD), air temperature (TA) at 10 cm above the ground, soil temperature (Ts) and soil water content (SWC) at top-layer (0-15 cm) and sub-layer (15-30 cm) were measured from May to September after the second year since the formation of the small gap (the ratios of gap diameter to stand height were less than 0.5) in 2006 respectively. Results indicated that the highest value of PPFD occurred at the northern edge of the gap, particularly at the beginning of the growing season in May. On sunny days, the highest value of PPFD appeared earlier than that on overcast days. Maximum and mean values of TAwere higher in the northern part of the gap, and the minimum values of TAwere at the southern edge of the gap. Soil temperature varied obviously in the gap with the range from 1 to 8 ℃. Maximum values of Ts occurred at the northern part of the gap, which was significantly correlated with the maximum values of TA (R = 0.735, P〈0.05). SWC was higher in the top-layer (0-15 cm) than that in sub-layer (15-30 cm), but the difference of them was not significant (p〉0.05), which might be attributed to the small gap size and the effects of aboveground vegetations. From these results, the maximum of PPFD in the study area occurred at the northern part of the gap, which was consistent with the results observed in north hemisphere, but the occurrence time varied with the differences of the latitudes. The highest values of air and soil temperatures also occurred in the northern part of the gap because they were affected by the radiation. However, the variation of temperature in July was different from other months due to the influence of gap size. And the values of soil water content were neither higher in the gap in the wet season nor lower in the dry season, which might be affected by the gap size and topography the gap located. The variations of light, soil and air temperatures, and soil moisture in this small irregular gap might be related to the effects of the micro-site, which affects the regeneration of plant species.
基金U nder the auspices of A pplication Fund of A griculture Science and Technology Fruits of M inistry of Science andTechnology ofChina (N o.04EFN 217400411)
文摘By using,summer temperature data in 26 stations from 1951 to 2003, the variation characteristics of summer temperature in Northeast China (NET) were analyzed based on the background of climate wanning. The results showed that the warming in summer was 0.15~C/10a in Northeast China, which was higher than that on the global, Northern Hemisphere or Northeast Asia scale in the recent 50 years. The responses of NET to global warming were shown in 3 aspects mainly. Firstly, it became warm and the average temperature increased in summer; secondly, the temperature variability increased, which displayed the increase of climatic instability; thirdly, the disaster of low temperature decreased and high temperature damage increased obviously, but the disaster of low temperature still existed in some areas under global warming background, which would be worthy of notice further.
基金the National Basic Research Program of China(973 Program)(No. 2010CB428401)the Special Fund of Climate Change of the China Meteorological Administration (CCSF-09-16)by the National Natural Science Foundation of China(40910177)
文摘Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorological stations are used. Two temperature indicators (monthly mean and monthly maximum mean) and three precipitation indicators (monthly total, monthly maximum consecutive 5-day precipitation, and monthly dry days) are analyzed. Tendencies in all five indicators can be observed. Many stations show significant positive trends (above the 90% confidence level) for monthly mean temperatures and monthly maximum mean temperatures. For all months, a significant increase in temperature from 1961 to 2007 can be observed in the entire basin with the coastal area in particular. Positive trends of precipitation extremes can be observed from January to March. Negative trends are detected from September to November. The number of dry days in October increased significantly at 40% of all meteorological stations. Stations with changes of monthly precipitation extremes are scattered over the Zhujiang River Basin. An aggregation of heat waves and droughts can be detected which is accompanied by significant increases of temperature extremes and the negative tendencies in precipitation extremes. The detection of tendencies in climate station density. extremes essentially relies on a good data quality and high
基金Research into Methods for Monitoring Monsoons in the South China Sea and East Asia Basedon Satellite Observations - a project from the Scientific Research Fund for Tropical and Marine Meteorology
文摘The results by statistical analysis of black body Temperature (TBB) pentad mean from the Japanese GMS in the period of May to August, 1980-2002, show that the summer monsoon index (SMI) is defined to be the pentad mean TBB≤273 K. Its intensity includes three levels: TBB〉268 K for weak monsoon, 268 KETBB〉263 K for normal monsoon and TBB≤263K for strong monsoon over the South China sea and East Asia. In the meantime, a diagnostic method using TBB pentad anomaly is also introduced to help identify monsoon intensity. The SMI is used to run statistical analyses of the initial onset of the monsoon and its pentad variations with the year and month. A fairly close relationship is found between pentad monsoon activity and heavy rainfall periods in the two typical flood years of 1994 and 1998, which resulted from heavy rainfall over the Yangtze River basin and south China.
基金Under the auspices of National Natural Science Foundation of China (No. 40375032,No. 40675043)
文摘Using the daily maximum and minimum temperature dataset from 128 stations from 1960 to 2004 in Northwest China,daily extreme high temperature(EHT)and extreme low temperature(ELT)thresholds were deter-mined by centesimal method for different stations at first,then yearly EHT and ELT events were counted up in differ-ent stations,and the characteristics of their spatio-temporal distribution were diagnosed at last.The study drew follow-ing conclusions:1)The consistent anomaly distribution characteristic was the most important mode of the EHT and ELT events in Northwest China.2)The spatial distribution of the EHT and ELT events can be divided into five sub-regions,namely,the north of Qinghai and west of Gansu,the north of Xinjiang,the south of Xinjiang,the east of Northwest China and the south of Qinghai.3)The EHT events showed remarkable increasing trend in all of five sub-regions,but only in the north of Qinghai and west of Gansu area,sudden change phenomenon occurred;the ELT events showed decreasing trend in all of five sub-regions,and sudden change phenomenon occurred in Northwest China except for south of Qinghai.4)In all of five sub-regions the EHT events showed remarkable 12-14yr period os-cillation,and the ELT event showed significant 13-15yr and 7-8yr period oscillation.5)The EHT and ELT events displayed remarkable positive and negative responses to regional warming of Northwest China respectively.
基金supported by the Department of Science and Technology of China(2009CB421403 and2010CB428403)by the National Natural Science Foundation of China(41275110)
文摘Daily precipitation for 1960-2011 and maximum/minimum temperature extremes for 1960-2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyzed with a main focus on the trends and variabilities of daily extreme occurrences.Results show significant increases in daily extreme warm temperatures and decreases in daily extreme cold temperatures,defined as the number of days in which daily maximum temperature (Tmax) and daily minimum temperature (Tmin) are greater than the 90th percentile and less than thel0th percentile,respectively.Generally,the trend magnitudes are larger in indices derived from Tmin than those from Tmax.Trends of percentile-based precipitation indices show distinct spatial patterns with increases in heavy precipitation events,defined as the top 95th percentile of daily precipitation,in westem and northeastern China and in the low reaches of the Yangtze River basin region,and slight decreases in other areas.Light precipitation,defined as the tail of the 5th percentile of daily precipitation,however,decreases in most areas.The annual maximum consecutive dry days (CDD) show an increasing trend in southem China and the middle-low reach of the Yellow River basin,while the annual maximum consecutive wet days (CWD) displays a downtrend over most regions except western China.These indices vary significantly with regions and seasons.Overall,occurrences of extreme events in China are more frequent,particularly the night time extreme temperature,and landmasses in China become warmer and wetter.
文摘Air temperature and snow cover variability are sensitive indicators of climate change. This study was undertaken to forecast and quantify the potential streamflow response to climate change in the Jhelum River basin. The implications of air temperature trends (+0.11℃decade) reported for the entire north-west Himalaya for past century and the regional warming (+0.7℃/decade) trends of three observatories analyzed between last two decades were used for future projection of snow cover depletion and stream flow. The streamflow was simulated and validated for the year 2007-2008 using snowmelt runoff model (SRM) based on in-situ temperature and precipitation with remotely sensed snow cover area. The simulation was repeated using higher values of temperature and modified snow cover depletion curves according to the assumed future climate. Early snow cover depletion was observed in the basin in response to warmer climate. The results show that with the increase in air temperature, streamfiow pattern of Jhelum will be severely affected. Significant redistribution of streamflow was observed in both the scenarios. Higher discharge was observed during spring-summer months due to early snowmelt contribution with water deficit during monsoon months. Discharge increased by 5%-40% during the months of March to May in 2030 and 2050. The magnitude of impact of air temperature is higher in the scenario-2 based on regional warming. The inferences pertaining to change in future streamflow pattern can facilitate long term decisions and planning concerning hydro-power potential, waterresource management and flood hazard mapping in the region.
基金Key project from Natural Science Foundation of China (40231009)
文摘Based on temperature data in Guangdong in the past 50years, statistical methods are used to analyze the characteristics of temperature in spatial and temporal variation. The results show that land surface temperature warms by 0.16℃/1 0a in Guangdong. The range of warming was lower than the average of nationwide and global land surface. Furthermore, the temperature has a larger increase tendency in winter and spring and coastal areas than in summer and autumn and inland areas. Climate zones move towards the north obviously. North tropical zone is expanding, south subtropical zone is reducing and central subtropical zone is relatively stable. Under the global climate warming, characteristics of climate warming in Guangdong were influenced by atmosphere general circulation, sea surface temperature and human activities etc.