A regional model of vegetation dynamics was revised to include land use as a constraint to vegetation dynamics and primary production processes. The model was applied to a forest transect in eastern China (NSTEC, Nort...A regional model of vegetation dynamics was revised to include land use as a constraint to vegetation dynamics and primary production processes. The model was applied to a forest transect in eastern China (NSTEC, North-South transect of eastern China) to investigate the responses of the transect to possible future climatic change. The simulation result indicated that land use has profound effects on vegetation transition and primary production. In particular, land use reduced competition among vegetation classes and tended to result in less evergreen broadleaf forests but more shrubs and grasses in the transect area. The simulation runs with land use constraint also gave much more realistic estimation about net primary productivity as well as responses of the productivity to future climatic change along the transect. The simulations for future climate scenarios projected by general circulation models (GCM) with doubled atmospheric CO2 concentration predicted that deciduous broadleaf forests would increase, but conifer forests, shrubs and grasses would decrease. The overall effects of doubling CO2 and climatic changes on NSTEC were to produce an increased net primary productivity (NPP) at equilibrium for all seven GCM scenarios. The predicted range of NPP variation in the north is much larger than that in the south.展开更多
Alpine treeline, as a prominent ecological boundary between forested mountain slopes and alpine meadow/shrub, is highly complex in altitudinal distribution and sensitive to warming climate. Great efforts have been mad...Alpine treeline, as a prominent ecological boundary between forested mountain slopes and alpine meadow/shrub, is highly complex in altitudinal distribution and sensitive to warming climate. Great efforts have been made to explore their distribution patterns and ecological mechanisms that determine these patterns for more than 100 years, and quite a number of geographical and ecophysiological models have been developed to correlate treeline altitude with latitude or a latitude related temperature. However,on a global scale, all of these models have great difficulties to accurately predict treeline elevation due to the extreme diversity of treeline site conditions.One of the major reasons is that "mass elevation effect"(MEE) has not been quantified globally and related with global treeline elevations although it has been observed and its effect on treeline elevations in the Eurasian continent and Northern Hemisphere recognized. In this study, we collected and compiled a total of 594 treeline sites all over the world from literatures, and explored how MEE affects globaltreeline elevation by developing a ternary linear regression model with intra-mountain base elevation(IMBE, as a proxy of MEE), latitude and continentality as independent variables. The results indicated that IMBE, latitude and continentality together could explain 92% of global treeline elevation variability, and that IMBE contributes the most(52.2%), latitude the second(40%) and continentality the least(7.8%) to the altitudinal distribution of global treelines. In the Northern Hemisphere, the three factors' contributions amount to 50.4%, 45.9% and 3.7% respectively; in the south hemisphere, their contributions are 38.3%, 53%, and 8.7%, respectively. This indicates that MEE, virtually the heating effect of macro-landforms, is actually the most significant factor for the altitudinal distribution of treelines across the globe, and that latitude is relatively more significant for treeline elevation in the Southern Hemisphere probably due to fewer macro-landforms there.展开更多
文摘A regional model of vegetation dynamics was revised to include land use as a constraint to vegetation dynamics and primary production processes. The model was applied to a forest transect in eastern China (NSTEC, North-South transect of eastern China) to investigate the responses of the transect to possible future climatic change. The simulation result indicated that land use has profound effects on vegetation transition and primary production. In particular, land use reduced competition among vegetation classes and tended to result in less evergreen broadleaf forests but more shrubs and grasses in the transect area. The simulation runs with land use constraint also gave much more realistic estimation about net primary productivity as well as responses of the productivity to future climatic change along the transect. The simulations for future climate scenarios projected by general circulation models (GCM) with doubled atmospheric CO2 concentration predicted that deciduous broadleaf forests would increase, but conifer forests, shrubs and grasses would decrease. The overall effects of doubling CO2 and climatic changes on NSTEC were to produce an increased net primary productivity (NPP) at equilibrium for all seven GCM scenarios. The predicted range of NPP variation in the north is much larger than that in the south.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41030528 and No. 40971064)
文摘Alpine treeline, as a prominent ecological boundary between forested mountain slopes and alpine meadow/shrub, is highly complex in altitudinal distribution and sensitive to warming climate. Great efforts have been made to explore their distribution patterns and ecological mechanisms that determine these patterns for more than 100 years, and quite a number of geographical and ecophysiological models have been developed to correlate treeline altitude with latitude or a latitude related temperature. However,on a global scale, all of these models have great difficulties to accurately predict treeline elevation due to the extreme diversity of treeline site conditions.One of the major reasons is that "mass elevation effect"(MEE) has not been quantified globally and related with global treeline elevations although it has been observed and its effect on treeline elevations in the Eurasian continent and Northern Hemisphere recognized. In this study, we collected and compiled a total of 594 treeline sites all over the world from literatures, and explored how MEE affects globaltreeline elevation by developing a ternary linear regression model with intra-mountain base elevation(IMBE, as a proxy of MEE), latitude and continentality as independent variables. The results indicated that IMBE, latitude and continentality together could explain 92% of global treeline elevation variability, and that IMBE contributes the most(52.2%), latitude the second(40%) and continentality the least(7.8%) to the altitudinal distribution of global treelines. In the Northern Hemisphere, the three factors' contributions amount to 50.4%, 45.9% and 3.7% respectively; in the south hemisphere, their contributions are 38.3%, 53%, and 8.7%, respectively. This indicates that MEE, virtually the heating effect of macro-landforms, is actually the most significant factor for the altitudinal distribution of treelines across the globe, and that latitude is relatively more significant for treeline elevation in the Southern Hemisphere probably due to fewer macro-landforms there.