期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
1960~2017年华北地区气候生长季变化特征及成因分析 被引量:11
1
作者 董满宇 李洁敏 +3 位作者 王磊鑫 刘佩佩 江源 吴正方 《地理科学》 CSSCI CSCD 北大核心 2019年第12期1990-2000,共11页
基于华北地区1960~2017年逐日气温数据,运用Mann-Kendall非参数检验、Morlet小波分析和R/S分析等方法,分析了华北地区气候生长季指标生长季开始(GSS)、生长季结束(GSE)、生长季长度(GSL)、生长季内≥10℃活动积温(AT10)及其对应的天数(D... 基于华北地区1960~2017年逐日气温数据,运用Mann-Kendall非参数检验、Morlet小波分析和R/S分析等方法,分析了华北地区气候生长季指标生长季开始(GSS)、生长季结束(GSE)、生长季长度(GSL)、生长季内≥10℃活动积温(AT10)及其对应的天数(DT10)的时空变化特征及其影响因素。结果表明:①华北地区GSS呈显著的提前趋势,变化速率为−2.43 d/10a,GSL呈现出明显延长,AT10和DT10表现为显著增加趋势,变化速率分别为2.95 d/10 a、67.14℃/10a和2.31 d/10a,GSE变化趋势不明显。近60 a来华北地区GSL的延长主要归因于GSS的明显提前。②生长季指标变化趋势在空间上存在明显差异,其中GSS与GSL,AT10与DT10变化趋势的空间分布格局较为相似。③生长季指标普遍在20世纪90年代中后期发生了明显的突变,GSS、GSE和GSL的突变年份为1994~1995年,AT10和DT10的突变年份为1997~1998年。④近60 a来华北地区生长季指标变化存在着2~3 a、5~6 a的主周期。生长季指标Hurst指数都大于0.7,表现为较强的持续性,其过去变化趋势将在未来继续延续。⑤北大西洋年代际振荡指数(AMO)是影响近60 a来华北地区生长季指标(GSS、GSE与AT10)变化的主要大气环流因子。 展开更多
关键词 气候生长季 趋势分析 时空变化 大气环流指数 华北地区
下载PDF
气候变暖背景下东北三省气候生长季时空变化特征 被引量:3
2
作者 台秉洋 刘滨辉 《东北林业大学学报》 CAS CSCD 北大核心 2012年第4期34-40,共7页
基于1959—2008年我国东北三省34个气象站点的每日平均气温观测资料,分析了在气候变暖背景下该区气候生长季各指标(生长季起始日期、生长季结束日期、生长季长度和积温)的变化特征,及其与温度变化之间的关系。结果表明:东北三省1959—2... 基于1959—2008年我国东北三省34个气象站点的每日平均气温观测资料,分析了在气候变暖背景下该区气候生长季各指标(生长季起始日期、生长季结束日期、生长季长度和积温)的变化特征,及其与温度变化之间的关系。结果表明:东北三省1959—2008年春季、秋季和3—11月平均温度显著上升,三者随时间的变化规律大体相同,呈现在1987年前围绕多年平均值波动,1987年开始快速上升的特点。整个观测期,东北三省生长季起始日期提前了5.6 d,西部提前的幅度明显高于东部;生长季结束日期延后了5.4 d,中部延后的幅度较南部和北部明显;生长季长度增加了11.0 d,生长季长度倾向率的空间分布特点与生长季起始日期相类似;积温增加了268.7℃.d。1959—2008年间,生长季开始日期提前,生长季结束日期延后,生长季长度变长,积温上升,20世纪90年代后期变化趋势变缓。积温、生长季长度与3—11月平均温度均显著正相关,且积温与其平均温度的相关关系的密切程度总是高于生长季长度;生长季起始日期的变化对于生长季长度的影响更大一些。 展开更多
关键词 东北三省 气候生长季 积温 气候倾向率
下载PDF
内蒙古通辽市2011年生长季气候对农作物影响分析
3
作者 刘亚玲 王俊 李颖 《畜牧与饲料科学》 2012年第3期134-135,共2页
根据内蒙古通辽地区境内的7个国家气象观测站2011年4—9月的气温、降水、墒情等资料,并结合农作物在整个生长过程中的生长状况,对通辽地区2011年生长季气候对农作物生长的影响进行了综合分析。结果表明,从农作物生长的整个生育期来看,... 根据内蒙古通辽地区境内的7个国家气象观测站2011年4—9月的气温、降水、墒情等资料,并结合农作物在整个生长过程中的生长状况,对通辽地区2011年生长季气候对农作物生长的影响进行了综合分析。结果表明,从农作物生长的整个生育期来看,播种至出苗期水分充足,土壤墒情好,春播抓苗顺利;水热匹配较为适宜,基本上是雨热同季,适宜大田作物生长发育,使农作物生长旺;夏季冰雹、洪涝、干旱等自然灾害给农牧业生产造成一定的经济损失,但由于田间管理及时到位,抗旱浇地组织及时,有效地降低了灾害损失。 展开更多
关键词 生长气候 气象因素 农作物生长 影响分析
下载PDF
1961—2010年湘中地区气候极值与农业气候指标动态变化趋势 被引量:3
4
作者 邓梅 蔡海朝 +4 位作者 马琴 王萍 刘久国 肖妙妮 陈铁军 《中国农学通报》 2018年第25期139-144,共6页
利用湘中地区1961—2010年气象站逐日观测数据资料,选取与农作物密切相关的气候极值和农业气候指标,采用统计检验、趋势分析和Mann-Kendall突变检验等的方法,分析了湘中地区农业水热气候条件和气候极值,进而研究主要农业气候指标的变化... 利用湘中地区1961—2010年气象站逐日观测数据资料,选取与农作物密切相关的气候极值和农业气候指标,采用统计检验、趋势分析和Mann-Kendall突变检验等的方法,分析了湘中地区农业水热气候条件和气候极值,进而研究主要农业气候指标的变化倾向。研究发现:湘中地区1961—2010年,水热资源总体呈增加趋势;年强降水量呈增大趋势,尤其以夏季强降水量增加最为明显,表明夏季洪涝灾害的威胁加大;最高(低)气温阈值的变化表明极端高(低)温均呈缓解趋势,及其出现的天数减少,说明由极端气候引起高温热害、低温冷害等气象灾害发生的可能性减小;≥0℃和≥10℃积温分别在1997年和2000年开始突变,上升趋势明显,表明湘中地区有效热量资源在增加;霜冻日数呈减小趋势,说明霜冻危害发生的风险在减小。这对确定合适的农业气候指标值和促进农业生产有重要的指导意义。 展开更多
关键词 气候极值 农业气候指标 积温 霜冻 气候生长季长度
下载PDF
2019年单县夏玉米生长季气候特征分析及影响
5
作者 孙雪 王优 +2 位作者 丁泽龙 韩凤 刘鹏 《农家致富顾问》 2019年第20期59-59,共1页
根据单县国家级气象站地面观测资料,对单县2019年℃夏玉米全生育期日照、气温及降水量等气象条件进行综合分析,来探讨2019年的气象条件对单县夏玉米生长发育和产量形成的利弊影响。结果表明:2019年的气候条件对夏玉米生长发育和产量十... 根据单县国家级气象站地面观测资料,对单县2019年℃夏玉米全生育期日照、气温及降水量等气象条件进行综合分析,来探讨2019年的气象条件对单县夏玉米生长发育和产量形成的利弊影响。结果表明:2019年的气候条件对夏玉米生长发育和产量十分形成有利,季内虽然有气象灾害发生,但总体发生偏轻,影响有限。此结果可为地方政府各相关部门的科学决策提供理论依据。 展开更多
关键词 单县 生长气候特征 夏玉米
原文传递
Impacts of Climate Change on Forest Ecosystems in Northeast China 被引量:12
6
作者 WANG Xiao-Ying ZHAO Chun-Yu JIA Qing-Yu 《Advances in Climate Change Research》 SCIE 2013年第4期230-241,共12页
This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous ... This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous forests has been increasing at an average rate of 3.9 d per decade. Regional warming favors the growth of temperate broad-leaved forests and has a detrimental effect on the growth of boreal coniferous forests. Over the past hundred years, the forest edge of the cool temperate zone in the southern Daxing'anling region has retreated 140 km northward. From 1896 to 1986, the northern boundary of broad-leaved forests in Heilongjiang province has extended northwestward about 290 km. Future climatic changes (until 2060) may lead to the northern deciduous needle forests moving out of China's territory altogether. The occurrence cycles of pests and diseases have shortened; their distribution ranges have expanded. The life cycle of tent caterpillars (Malacosoma neustria testacea Motschulsky) has shortened from 14-15 years in the past to 8-10 years now. The pine caterpillar (Dendrolimus tabulaeformis Tsai et Liu), which has spread within western Liaoning province and the nearby areas, can now be found in the north and west. Lightning fires in the Daxing'anling region have significantly increased since 1987, and August has become the month when lightning fires occur most frequently. Overall, the net primary productivity (NPP) of forest in Northeast China has increased. The NPP in 1981 was around 0.27 Pg C, and increased to approximately 0.40 Pg C in 2002. With the current climate, the broad-leaved Korean pine forest ecosystem acts as a carbon sink, with a carbon sink capacity of 2.7 Mg C hm-2. Although the carbon sink capacity of the forest ecosystems in Northeast China has been weakened since 2003, the total carbon absorption will still increase. The forest ecosystems in Northeast China are likely to remain a significant carbon sink, and will play a positive role in the mitigation of climate change. 展开更多
关键词 Northeast China forest ecosystem climate change
下载PDF
Effect of climate change on seasonal water use efficiency in subalpine Abies fabri 被引量:4
7
作者 SUN Xiang-yang WANG Gen-xu +2 位作者 HUANG Mei HU Zhao-yong SONG Chun-lin 《Journal of Mountain Science》 SCIE CSCD 2017年第1期142-157,共16页
Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio ... Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests. 展开更多
关键词 Climate change Carbon gain Water use efficiency Atmospheric-vegetation interaction model
下载PDF
Effects of warming on soil respiration during the non-growing seasons in a semiarid temperate steppe 被引量:6
8
作者 Yuan Miao Mengzhou Liu +7 位作者 Juan Xuan Wei Xu Shilin Wang Renhui Miao Dong Wang Wei Wu Yinzhan Liu Shijie Han 《Journal of Plant Ecology》 SCIE CSCD 2020年第3期288-294,共7页
Aims The response pattern of terrestrial soil respiration to warming during non-growing seasons is a poorly understood phenomenon,though many believe that these warming effects are potentially significant.This study w... Aims The response pattern of terrestrial soil respiration to warming during non-growing seasons is a poorly understood phenomenon,though many believe that these warming effects are potentially significant.This study was conducted in a semiarid temperate steppe to examine the effects of warming during the non-growing seasons on soil respiration and the underlying mechanisms associated therewith.Methods This experiment was conducted in a semiarid temperate grassland and included 10 paired control and experimental plots.Experimental warming was achieved with open top chambers(OTCs)in October 2014.Soil respiration,soil temperature and soil moisture were measured several times monthly from November 2014 to April 2015 and from November 2015 to April 2016.Microbial biomass carbon(MBC),microbial biomass nitrogen(MBN)and available nitrogen content of soil were measured from 0 to 20 cm soil depth.Repeated measurement ANOVAs and paired-sample t tests were conducted to document the effect of warming,and the interactions between warming and time on the above variables.Simple regressions were employed to detect the underlying causality for the observed effects.Important Findings Soil respiration rate was 0.24μmol m^(−2) s^(−1) in the control plots during the non-growing seasons,which was roughly 14.4%of total soil carbon flux observed during growing seasons.Across the two non-growing seasons,warming treatment significantly increased soil temperature and soil respiration by 1.48℃(P<0.001)and 42.1%(P<0.01),respectively,when compared with control plots.Warming slightly,but did not significantly decrease soil moisture by 0.66%in the non-growing seasons from 2015 to 2016.In the non-growing seasons 2015–16,experimental warming significantly elevated MBC and MBN by 19.72%and 20.99%(both P<0.05),respectively.In addition,soil respiration responses to warming were regulated by changes in soil temperate,MBC and MBN.These findings indicate that changes in non-growing season soil respiration impact other components in the carbon cycle.Additionally,these findings facilitate projections regarding climate change–terrestrial carbon cycling. 展开更多
关键词 climate warming microbial biomass non-growing seasons soil carbon flux temperate grasslands
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部