This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous ...This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous forests has been increasing at an average rate of 3.9 d per decade. Regional warming favors the growth of temperate broad-leaved forests and has a detrimental effect on the growth of boreal coniferous forests. Over the past hundred years, the forest edge of the cool temperate zone in the southern Daxing'anling region has retreated 140 km northward. From 1896 to 1986, the northern boundary of broad-leaved forests in Heilongjiang province has extended northwestward about 290 km. Future climatic changes (until 2060) may lead to the northern deciduous needle forests moving out of China's territory altogether. The occurrence cycles of pests and diseases have shortened; their distribution ranges have expanded. The life cycle of tent caterpillars (Malacosoma neustria testacea Motschulsky) has shortened from 14-15 years in the past to 8-10 years now. The pine caterpillar (Dendrolimus tabulaeformis Tsai et Liu), which has spread within western Liaoning province and the nearby areas, can now be found in the north and west. Lightning fires in the Daxing'anling region have significantly increased since 1987, and August has become the month when lightning fires occur most frequently. Overall, the net primary productivity (NPP) of forest in Northeast China has increased. The NPP in 1981 was around 0.27 Pg C, and increased to approximately 0.40 Pg C in 2002. With the current climate, the broad-leaved Korean pine forest ecosystem acts as a carbon sink, with a carbon sink capacity of 2.7 Mg C hm-2. Although the carbon sink capacity of the forest ecosystems in Northeast China has been weakened since 2003, the total carbon absorption will still increase. The forest ecosystems in Northeast China are likely to remain a significant carbon sink, and will play a positive role in the mitigation of climate change.展开更多
Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio ...Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.展开更多
Aims The response pattern of terrestrial soil respiration to warming during non-growing seasons is a poorly understood phenomenon,though many believe that these warming effects are potentially significant.This study w...Aims The response pattern of terrestrial soil respiration to warming during non-growing seasons is a poorly understood phenomenon,though many believe that these warming effects are potentially significant.This study was conducted in a semiarid temperate steppe to examine the effects of warming during the non-growing seasons on soil respiration and the underlying mechanisms associated therewith.Methods This experiment was conducted in a semiarid temperate grassland and included 10 paired control and experimental plots.Experimental warming was achieved with open top chambers(OTCs)in October 2014.Soil respiration,soil temperature and soil moisture were measured several times monthly from November 2014 to April 2015 and from November 2015 to April 2016.Microbial biomass carbon(MBC),microbial biomass nitrogen(MBN)and available nitrogen content of soil were measured from 0 to 20 cm soil depth.Repeated measurement ANOVAs and paired-sample t tests were conducted to document the effect of warming,and the interactions between warming and time on the above variables.Simple regressions were employed to detect the underlying causality for the observed effects.Important Findings Soil respiration rate was 0.24μmol m^(−2) s^(−1) in the control plots during the non-growing seasons,which was roughly 14.4%of total soil carbon flux observed during growing seasons.Across the two non-growing seasons,warming treatment significantly increased soil temperature and soil respiration by 1.48℃(P<0.001)and 42.1%(P<0.01),respectively,when compared with control plots.Warming slightly,but did not significantly decrease soil moisture by 0.66%in the non-growing seasons from 2015 to 2016.In the non-growing seasons 2015–16,experimental warming significantly elevated MBC and MBN by 19.72%and 20.99%(both P<0.05),respectively.In addition,soil respiration responses to warming were regulated by changes in soil temperate,MBC and MBN.These findings indicate that changes in non-growing season soil respiration impact other components in the carbon cycle.Additionally,these findings facilitate projections regarding climate change–terrestrial carbon cycling.展开更多
基金the Public Research Institute Fun-damental Research Foundation of the Institute of Atmospheric Environment of ChinaChina Meteororlgical Administration(No.2011IAE-CMA01)+1 种基金National Natural Science Foundation of China(No.41171199)the Special Climate Change Research Program Foundation of China Meteororlgical Administration(No.062700s010c01)for providing supports
文摘This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous forests has been increasing at an average rate of 3.9 d per decade. Regional warming favors the growth of temperate broad-leaved forests and has a detrimental effect on the growth of boreal coniferous forests. Over the past hundred years, the forest edge of the cool temperate zone in the southern Daxing'anling region has retreated 140 km northward. From 1896 to 1986, the northern boundary of broad-leaved forests in Heilongjiang province has extended northwestward about 290 km. Future climatic changes (until 2060) may lead to the northern deciduous needle forests moving out of China's territory altogether. The occurrence cycles of pests and diseases have shortened; their distribution ranges have expanded. The life cycle of tent caterpillars (Malacosoma neustria testacea Motschulsky) has shortened from 14-15 years in the past to 8-10 years now. The pine caterpillar (Dendrolimus tabulaeformis Tsai et Liu), which has spread within western Liaoning province and the nearby areas, can now be found in the north and west. Lightning fires in the Daxing'anling region have significantly increased since 1987, and August has become the month when lightning fires occur most frequently. Overall, the net primary productivity (NPP) of forest in Northeast China has increased. The NPP in 1981 was around 0.27 Pg C, and increased to approximately 0.40 Pg C in 2002. With the current climate, the broad-leaved Korean pine forest ecosystem acts as a carbon sink, with a carbon sink capacity of 2.7 Mg C hm-2. Although the carbon sink capacity of the forest ecosystems in Northeast China has been weakened since 2003, the total carbon absorption will still increase. The forest ecosystems in Northeast China are likely to remain a significant carbon sink, and will play a positive role in the mitigation of climate change.
基金supported by the Natural Science Foundation of China (No.41401044 and No.41310013)the key research projects of frontier sciences CAS (QYZDJ-SSW-DQC006)+1 种基金the Chinese Academy of Science (‘West Star’ project)the CAS/SAFEA international partnership program for creative research teams (KZZD-EW-TZ-06)
文摘Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.
基金supported by the National Natural Science Foundation of China(31670477,31800399)China Postdoctoral Science Foundation(2018M642738,2018M642739)Henan Province Foundation and Advanced Technology Project(192102110085).
文摘Aims The response pattern of terrestrial soil respiration to warming during non-growing seasons is a poorly understood phenomenon,though many believe that these warming effects are potentially significant.This study was conducted in a semiarid temperate steppe to examine the effects of warming during the non-growing seasons on soil respiration and the underlying mechanisms associated therewith.Methods This experiment was conducted in a semiarid temperate grassland and included 10 paired control and experimental plots.Experimental warming was achieved with open top chambers(OTCs)in October 2014.Soil respiration,soil temperature and soil moisture were measured several times monthly from November 2014 to April 2015 and from November 2015 to April 2016.Microbial biomass carbon(MBC),microbial biomass nitrogen(MBN)and available nitrogen content of soil were measured from 0 to 20 cm soil depth.Repeated measurement ANOVAs and paired-sample t tests were conducted to document the effect of warming,and the interactions between warming and time on the above variables.Simple regressions were employed to detect the underlying causality for the observed effects.Important Findings Soil respiration rate was 0.24μmol m^(−2) s^(−1) in the control plots during the non-growing seasons,which was roughly 14.4%of total soil carbon flux observed during growing seasons.Across the two non-growing seasons,warming treatment significantly increased soil temperature and soil respiration by 1.48℃(P<0.001)and 42.1%(P<0.01),respectively,when compared with control plots.Warming slightly,but did not significantly decrease soil moisture by 0.66%in the non-growing seasons from 2015 to 2016.In the non-growing seasons 2015–16,experimental warming significantly elevated MBC and MBN by 19.72%and 20.99%(both P<0.05),respectively.In addition,soil respiration responses to warming were regulated by changes in soil temperate,MBC and MBN.These findings indicate that changes in non-growing season soil respiration impact other components in the carbon cycle.Additionally,these findings facilitate projections regarding climate change–terrestrial carbon cycling.