Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress will become more and more serious. This paper reviewed the effects of heat stress on metabolism...Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress will become more and more serious. This paper reviewed the effects of heat stress on metabolism of proteins, glucose, fat and energy in skeletal muscle and related mechanisms so as to provide theoretical guidance for alleviating heat stress and improving production performance of animal suffering from heat stress.展开更多
In this secondary research, published works on effect of climate change on water resources in other countries and in Australia were reviewed critically. Research question, objectives and assumptions were made to facil...In this secondary research, published works on effect of climate change on water resources in other countries and in Australia were reviewed critically. Research question, objectives and assumptions were made to facilitate this study. First, methods used for such studies and their results at global level were reviewed. Then Australian specific methods of study and findings were reviewed. More commonly, both globally and in Australia, simulations using long-term real data on selected climatic scenarios of global climatic models are projected for long-term future trends. The validity and certainty of predicted occurrences depend upon the closeness of real time data with scenarios to which they are projected. Even with these limitations, projections of already rising temperatures and declining rainfall on surface water and ground water availabilities show gradual decline in water availability leading to water stress both for human communities and ecosystems The role of human-induced emissions in hastening the degradation process has also been investigated. Conserving all available water, practising efficient water consumption and prudent water policies only can provide some relief from what is inevitable.展开更多
Climate in Eastern Asia is composed of monsoon climate in the east,arid and semi-arid climate in the north and west,and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest.The underlying causes for th...Climate in Eastern Asia is composed of monsoon climate in the east,arid and semi-arid climate in the north and west,and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest.The underlying causes for the evolution of East Asian climate during late Cenozoic have long been investigated and debated,particularly with regards to the role played by the Qinghai-Tibetan Plateau uplift and the global cooling.In this paper,we reviewed major research developments in this area,and summarized the important results.Based on a synthesis of data,we propose that the Qinghai-Tibetan Plateau uplift alone cannot fully explain the formation of monsoon and arid climates in Eastern Asia during the past 22–25 Ma.Other factors such as the global ice volume and high-latitude temperature changes have also played a vital role.Moreover,atmospheric CO2changes may have modulated the monsoon and dry climate changes by affecting the location of the inter-tropical convergence zone(ITCZ),which controls the monsoon precipitation zone and the track of the East Asian winter monsoon during late Cenozoic.The integration of high-resolution geological record and numerical paleoclimate modeling could make new contributions to understanding the climate evolution and variation in eastern Asia in future studies.It could facilitate the investigation of the regional differences in East Asian environmental changes and the asynchronous nature between the uplift of Qinghai-Tibetan Plateau and their climatic effects.These would be the keys to understanding underlying driving forces for the evolution of the East Asian climate.展开更多
Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent o...Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants(POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses.(1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems.(2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion.(3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs.(4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean.(5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems.(6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time.(7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.展开更多
Archaeal and bacterial glycerol dialkyl glycerol tetraethers(GDGTs) play a unique role in discerning the biogeochemical processes and climate change in terrestrial(e.g. soil, peat, stalagmites, lakes, rivers, hot spri...Archaeal and bacterial glycerol dialkyl glycerol tetraethers(GDGTs) play a unique role in discerning the biogeochemical processes and climate change in terrestrial(e.g. soil, peat, stalagmites, lakes, rivers, hot springs) and marine environments. Organic proxies based on GDGTs(e.g. TEX_(86), MBT/CBT and BIT) have made impressive applications in the open ocean and terrestrial environments. However, the applicability of these proxies in marginal seas has not been thoroughly evaluated, which is necessary given the complexity and dynamics of these systems, such as organic matter(OM) flux, hydrodynamic conditions, and human impact. This review aims to summarize recent studies of GDGTs and GDGT-based proxies in the Chinese marginal seas(CMS), which are characterized by diverse gradient in terrigenous supplies and ocean productivity and hold rich information on climate and sea level changes, ocean current dynamics, sedimentary evolution and biogeochemical processes.展开更多
Accompanying the rapid growth of China's population and economy, energy consumption and carbon emission increased significantly from 1978 to 2012. China is now the largest energy consumer and CO2 emitter of the wo...Accompanying the rapid growth of China's population and economy, energy consumption and carbon emission increased significantly from 1978 to 2012. China is now the largest energy consumer and CO2 emitter of the world, leading to much interest in researches on the nexus between energy consumption, carbon emissions and low-carbon economy. This article presents the domestic Chinese studies on this hotpot issue, and we obtain the following findings. First, most research fields involve geography, ecology and resource economics, and research contents contained some analysis of current situation, factors decomposition, predictive analysis and the introduction of methods and models. Second, there exists an inverted "U-shaped" curve connection between carbon emission, energy consumption and economic development. Energy consumption in China will be in a low-speed growth after 2035 and it is expected to peak between 6.19–12.13 billion TCE in 2050. China's carbon emissions are expected to peak in 2035, or during 2020 to 2045, and the optimal range of carbon emissions is between 2.4–3.3 PgC/year(1 PgC=1 billion tons C) in 2050. Third, future research should be focused on global carbon trading, regional carbon flows, reforming the current energy structure, reducing energy consumption and innovating the low-carbon economic theory, as well as establishing a comprehensive theoretical system of energy consumption, carbon emissions and low-carbon economy.展开更多
基金Supported by Key Project of Natural Science Foundation of Hubei Province(2013CFA100)National Natural Science Foundation of China(31472117)
文摘Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress will become more and more serious. This paper reviewed the effects of heat stress on metabolism of proteins, glucose, fat and energy in skeletal muscle and related mechanisms so as to provide theoretical guidance for alleviating heat stress and improving production performance of animal suffering from heat stress.
文摘In this secondary research, published works on effect of climate change on water resources in other countries and in Australia were reviewed critically. Research question, objectives and assumptions were made to facilitate this study. First, methods used for such studies and their results at global level were reviewed. Then Australian specific methods of study and findings were reviewed. More commonly, both globally and in Australia, simulations using long-term real data on selected climatic scenarios of global climatic models are projected for long-term future trends. The validity and certainty of predicted occurrences depend upon the closeness of real time data with scenarios to which they are projected. Even with these limitations, projections of already rising temperatures and declining rainfall on surface water and ground water availabilities show gradual decline in water availability leading to water stress both for human communities and ecosystems The role of human-induced emissions in hastening the degradation process has also been investigated. Conserving all available water, practising efficient water consumption and prudent water policies only can provide some relief from what is inevitable.
基金supported by the Global Change Research Program of Ministry of Science and Technology of China(Grant No.2010CB950200)National Natural Science Foundation of China(Grant No.40930103)
文摘Climate in Eastern Asia is composed of monsoon climate in the east,arid and semi-arid climate in the north and west,and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest.The underlying causes for the evolution of East Asian climate during late Cenozoic have long been investigated and debated,particularly with regards to the role played by the Qinghai-Tibetan Plateau uplift and the global cooling.In this paper,we reviewed major research developments in this area,and summarized the important results.Based on a synthesis of data,we propose that the Qinghai-Tibetan Plateau uplift alone cannot fully explain the formation of monsoon and arid climates in Eastern Asia during the past 22–25 Ma.Other factors such as the global ice volume and high-latitude temperature changes have also played a vital role.Moreover,atmospheric CO2changes may have modulated the monsoon and dry climate changes by affecting the location of the inter-tropical convergence zone(ITCZ),which controls the monsoon precipitation zone and the track of the East Asian winter monsoon during late Cenozoic.The integration of high-resolution geological record and numerical paleoclimate modeling could make new contributions to understanding the climate evolution and variation in eastern Asia in future studies.It could facilitate the investigation of the regional differences in East Asian environmental changes and the asynchronous nature between the uplift of Qinghai-Tibetan Plateau and their climatic effects.These would be the keys to understanding underlying driving forces for the evolution of the East Asian climate.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41222010,41571463)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2011067)
文摘Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants(POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses.(1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems.(2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion.(3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs.(4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean.(5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems.(6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time.(7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.
基金supported by the Project of Shanghai Engineering Technology Research Center of Hadal Science (Grant No. 14DZ2250900)the Joint Project of Shanghai "Shutong" Hadal Science and Technology Special Foundation and Shanghai Ocean University Discipline Construction (Grant No. HAST-S-2015-01)+1 种基金the National Key Basic Research Program of China (Grant No. 2013CB955703)the South China Sea-Deep Program of the Natural National Science Foundation of China (Grant Nos. 91028005 & 91428308)
文摘Archaeal and bacterial glycerol dialkyl glycerol tetraethers(GDGTs) play a unique role in discerning the biogeochemical processes and climate change in terrestrial(e.g. soil, peat, stalagmites, lakes, rivers, hot springs) and marine environments. Organic proxies based on GDGTs(e.g. TEX_(86), MBT/CBT and BIT) have made impressive applications in the open ocean and terrestrial environments. However, the applicability of these proxies in marginal seas has not been thoroughly evaluated, which is necessary given the complexity and dynamics of these systems, such as organic matter(OM) flux, hydrodynamic conditions, and human impact. This review aims to summarize recent studies of GDGTs and GDGT-based proxies in the Chinese marginal seas(CMS), which are characterized by diverse gradient in terrigenous supplies and ocean productivity and hold rich information on climate and sea level changes, ocean current dynamics, sedimentary evolution and biogeochemical processes.
基金National Natural Science Foundation of China,No.41271547National Natural Science Foundation of China,No.41401644Strategic Priority Research Program–Climate Change:Carbon Budget and Related Issues of the Chinese Academy of Sciences,No.XDA05010400
文摘Accompanying the rapid growth of China's population and economy, energy consumption and carbon emission increased significantly from 1978 to 2012. China is now the largest energy consumer and CO2 emitter of the world, leading to much interest in researches on the nexus between energy consumption, carbon emissions and low-carbon economy. This article presents the domestic Chinese studies on this hotpot issue, and we obtain the following findings. First, most research fields involve geography, ecology and resource economics, and research contents contained some analysis of current situation, factors decomposition, predictive analysis and the introduction of methods and models. Second, there exists an inverted "U-shaped" curve connection between carbon emission, energy consumption and economic development. Energy consumption in China will be in a low-speed growth after 2035 and it is expected to peak between 6.19–12.13 billion TCE in 2050. China's carbon emissions are expected to peak in 2035, or during 2020 to 2045, and the optimal range of carbon emissions is between 2.4–3.3 PgC/year(1 PgC=1 billion tons C) in 2050. Third, future research should be focused on global carbon trading, regional carbon flows, reforming the current energy structure, reducing energy consumption and innovating the low-carbon economic theory, as well as establishing a comprehensive theoretical system of energy consumption, carbon emissions and low-carbon economy.