This paper presents numerical studies on the effects of atmospheric pressure fluctuations on hill-side coal fires and their surface anomalies. Based on the single-particle reaction–diffusion model, a formula to estim...This paper presents numerical studies on the effects of atmospheric pressure fluctuations on hill-side coal fires and their surface anomalies. Based on the single-particle reaction–diffusion model, a formula to estimate oxygen consumption rate at high temperature controlled by oxygen transport is proposed.Daily fluctuant atmospheric pressure was imposed on boundaries, including the abandoned gallery and cracks. Simulated results show that the effects of atmospheric pressure fluctuations on coal fires and surface anomalies depend on two factors: the fluctuant amplitude and the pressure difference between inlet(s) and outlet(s) of the air ventilation system. If the pressure difference is close to the fluctuant amplitude, atmospheric pressure fluctuations greatly enhance gas flow motion and temperatures of the combustion zone and outtake(s). If the pressure difference is much larger than the fluctuant amplitude, atmospheric pressure fluctuations exert no impact on underground coal fires and surface anomalies.展开更多
To overcome the drawbacks of the conventional foam technology used for dust suppression,including large pressure loss,high water pressure and low driving pressure,a new pneumatic foaming system is introduced.Then an o...To overcome the drawbacks of the conventional foam technology used for dust suppression,including large pressure loss,high water pressure and low driving pressure,a new pneumatic foaming system is introduced.Then an original design of foaming agent mixing device is proposed,and its performance is investigated and evaluated under different pressure compensations.Experimental results show that the maximum absorption amount increases by 2.9-6.7 times at a pressure compensation of 0.04-0.2 MPa compared with no pressure compensation.The pressure loss and pressure fluctuation both reduce significantly with increasing pressure compensation.The critical outlet pressure increases by30.4-240%.Field application indicates that the proposed mixing device ensures the reliable addition of foaming agent used for foam dust suppression.The effect of foam on dust suppression is remarkable,and the economic cost of foam is low.Therefore,there is reason to believe that the new mixing device will greatly promote foam technology to be widely used for suppressing dust in underground coal mines.展开更多
Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure dr...Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure drop across the air chamber.However,because of the complex configure of the impulse turbine and its high rotation speed,it is difficult to install it in the experimental simulator and numerical model.Therefore,the turbine damping effects on the operation of the OWC air chamber are induced to predict its performance more accurately.Orifice plates are used as a substitute for the impulse turbine as it generates a similar pressure drop and power output;the experimental and numerical pressure drops and output powers are compared.A 3D numerical wave tank based on the two-phase VOF model is established using the commercial CFD code Fluent,which can predict air flow and pressure variations in the chamber and duct.Water surface elevations,air flow velocity and pressure variation inside the chamber with the orifice plate are studied numerically,and validated by the corresponding experimental data.The air chamber of the Yongsoo OWC pilot plant is used as the engineering project case.The operating performance of the air chamber installed with a 0.428D orifice plate as the substitute for the designed impulse turbine is computed and analyzed.It is found that the turbine damping effects will cause around 30%reduction in the peak values of the pneumatic energy output of the OWC air chamber in the resonant wave domain.展开更多
文摘This paper presents numerical studies on the effects of atmospheric pressure fluctuations on hill-side coal fires and their surface anomalies. Based on the single-particle reaction–diffusion model, a formula to estimate oxygen consumption rate at high temperature controlled by oxygen transport is proposed.Daily fluctuant atmospheric pressure was imposed on boundaries, including the abandoned gallery and cracks. Simulated results show that the effects of atmospheric pressure fluctuations on coal fires and surface anomalies depend on two factors: the fluctuant amplitude and the pressure difference between inlet(s) and outlet(s) of the air ventilation system. If the pressure difference is close to the fluctuant amplitude, atmospheric pressure fluctuations greatly enhance gas flow motion and temperatures of the combustion zone and outtake(s). If the pressure difference is much larger than the fluctuant amplitude, atmospheric pressure fluctuations exert no impact on underground coal fires and surface anomalies.
基金supported by the National Natural Science Foundation of China(Nos.51474216 and 51504249)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for theCentral Universities
文摘To overcome the drawbacks of the conventional foam technology used for dust suppression,including large pressure loss,high water pressure and low driving pressure,a new pneumatic foaming system is introduced.Then an original design of foaming agent mixing device is proposed,and its performance is investigated and evaluated under different pressure compensations.Experimental results show that the maximum absorption amount increases by 2.9-6.7 times at a pressure compensation of 0.04-0.2 MPa compared with no pressure compensation.The pressure loss and pressure fluctuation both reduce significantly with increasing pressure compensation.The critical outlet pressure increases by30.4-240%.Field application indicates that the proposed mixing device ensures the reliable addition of foaming agent used for foam dust suppression.The effect of foam on dust suppression is remarkable,and the economic cost of foam is low.Therefore,there is reason to believe that the new mixing device will greatly promote foam technology to be widely used for suppressing dust in underground coal mines.
基金supported by the National Natural Science Foundation of China(Grant No.51279190&51311140259)Shandong Natural Science Funds for Distinguished Young Scholar(Grant No.JQ201314)+1 种基金"111"Project(Grant No.B14028)KRISO Endowment(Grant No.PES 2190)
文摘Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure drop across the air chamber.However,because of the complex configure of the impulse turbine and its high rotation speed,it is difficult to install it in the experimental simulator and numerical model.Therefore,the turbine damping effects on the operation of the OWC air chamber are induced to predict its performance more accurately.Orifice plates are used as a substitute for the impulse turbine as it generates a similar pressure drop and power output;the experimental and numerical pressure drops and output powers are compared.A 3D numerical wave tank based on the two-phase VOF model is established using the commercial CFD code Fluent,which can predict air flow and pressure variations in the chamber and duct.Water surface elevations,air flow velocity and pressure variation inside the chamber with the orifice plate are studied numerically,and validated by the corresponding experimental data.The air chamber of the Yongsoo OWC pilot plant is used as the engineering project case.The operating performance of the air chamber installed with a 0.428D orifice plate as the substitute for the designed impulse turbine is computed and analyzed.It is found that the turbine damping effects will cause around 30%reduction in the peak values of the pneumatic energy output of the OWC air chamber in the resonant wave domain.