期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
高速铁路隧道衬砌掉块气动力学行为及演化机制
1
作者 杨伟超 杨佳宝 +2 位作者 刘义康 王昂 施成华 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第5期1565-1577,共13页
随着我国高速铁路建造技术高质量发展,高速列车运行速度不断提升。受列车运行速度、隧道服役时间等众多因素的影响,高速铁路隧道在服役期间,衬砌裂损掉块病害现象日益凸显,严重危害行车安全。为探究行车环境下,列车风及其流场结构对隧... 随着我国高速铁路建造技术高质量发展,高速列车运行速度不断提升。受列车运行速度、隧道服役时间等众多因素的影响,高速铁路隧道在服役期间,衬砌裂损掉块病害现象日益凸显,严重危害行车安全。为探究行车环境下,列车风及其流场结构对隧道衬砌掉块下落过程的影响规律,建立列车-隧道-衬砌掉块-空气三维气固耦合计算模型,模拟行车环境下衬砌掉块自隧道拱顶脱落到下降落地的全过程。研究结果表明:1)衬砌掉块的下落过程包括3个方向的平动与转动,平动以沿列车纵向运动为主,纵向运动位移约为横向运动位移的4倍,转动以横轴为主;2)列车风与衬砌掉块相互作用相互影响,列车风作用在掉块时,掉块周围的流场出现漩涡、绕流等现象继而改变掉块的运动姿态和方向。与此同时,掉块的运动又进一步使其周围流场结构发生改变,以此不断反复直至落地;3)沿列车纵向上是流场结构的主要流动方向,列车风作用在掉块上,推动其运动,故沿列车纵向为衬砌掉块的主要运动方向。衬砌掉块随时间变化与流场结构产生不同的夹角与不同强度的绕流,故衬砌掉块的转动以横轴为主。研究结果对防治隧道掉块病害及提高行车安全性具有一定的参考价值。 展开更多
关键词 衬砌掉块 气动力学行为 行车安全 列车风 流场演化机制
下载PDF
A three-dimensional CFD study of the hydrodynamic behavior of equal and unequal-sized in-line methane bubbles at high pressure
2
作者 Nikolaos A.Avgerinos Dionissios P.Margaris 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第9期1792-1802,共11页
The hydrodynamic behavior of multiple bubbles rising upward is a field of ongoing research since various aspects of their interaction require further analysis. Shape deformation, rise velocity, and drag coefficient ar... The hydrodynamic behavior of multiple bubbles rising upward is a field of ongoing research since various aspects of their interaction require further analysis. Shape deformation, rise velocity, and drag coefficient are some of the uncertainties to be determined in a bubble upward flow. For this study the predictions of the three-dimensional numerical simulations of the volume of fluid(VOF) CFD model were first compared with experimental results available in the literature, serving as benchmark cases. Next, 28 cases of pairs of equal and unequal-sized in-line pairs of bubbles moving upwards were simulated. The bubble size varied between 2.0–10 mm. Breakthrough of the present study is the small initial distance of 2.5 R between the center of the bubbles. To provide a more practical nature in this study material properties were selected to match methane gas and seawater properties at deepsea conditions of 15 MPa and 4 ℃, thus yielding a fluid-to-bubble density ratio λ = 7.45 and viscosity ratio n = 100.46. This is one of the few studies to report results of the coalescence procedure in this context. The hydrodynamic behavior of the leading and trailing bubbles was thoroughly studied. Simulation results of the evolution of the rise velocity and the shape deformation with time indicate that the assumption that the leading bubble is rising as a free rising single one is not valid for bubbles between 2.0–7.0 mm. Finally, results of the volume of the daughter bubble exhibited an oscillating nature. 展开更多
关键词 BUBBLE COALESCENCE Computational fluid dynamics CFD METHANE Rise velocity Shape deformation
下载PDF
CFD Study of Ejector Flow Behavior in a Blast Furnace Gas Galvanizing Plant 被引量:5
3
作者 Giorgio Besagni Riccardo Mereu Fabio Inzoli 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第1期58-66,共9页
In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG... In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models (k-to SST and k-e Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided. 展开更多
关键词 CFD EJECTOR Blast Furnace Gas Galvanic plant RANS Turbulence models
原文传递
Numerical Investigation on Aeroelastic Behavior of Composite Material Plate Excited by Pulsed Air Jet 被引量:1
4
作者 XIE Hairun WU Yadong +1 位作者 WANG Anjenq OUYANG Hua 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第4期364-372,共9页
Nowadays, carbon fiber composite material is becoming more and more popular in aero engine industry due to its high specific strength and stiffness. Laminate carbon fiber composite material is widely used to manufactu... Nowadays, carbon fiber composite material is becoming more and more popular in aero engine industry due to its high specific strength and stiffness. Laminate carbon fiber composite material is widely used to manufacture the high load wide chord fan blade, containment casing, etc. The aeroelastic behavior of composite product is critical for the optimization of the product design and manufacturing. In order to explore its aeroelastic property, this paper discusses the coupled simulation of aerodynamic excitation applied on laminate composite material plate. Mechanical behavior of composite material plate is different from that of isotropic material plate such as metal plate, because it is anisotropy and has relative high mechanical damping due to resin between plies. These plates to be studied are designed using 4 different layup configurations which follow the design methods for composite fan blade. The numerical simulation of force response analysis mainly uses single frequency mechanical force input to simulate the electromagnetic shakers or other actuators, which could transmit mechanical force to the test parts. Meanwhile, pulsed air excitation is another way to "shake" the test parts. This excitation method induces aero damping into the test part and simulates the unsteady flow in aero engine, which could cause aeroelastic problems, such as flutter, forced response and non-synchronous vibration(NSV). In this study, numerical simulation using coupled method is conducted to explore the characteristics of laminate composite plates and the property of aerodynamic excitation force generated by pulsed air jet device. Modal analysis of composite plate shows that different ply stacking sequences have a significant impact on the plate vibration characteristics. Air pulse frequency and amplitude in flow field analysis are calibrated by hot wire anemometer results. As the air pulse frequency and amplitude are varied, incident angle of flow and layup configurations of plate can be analyzed in details by the simulations. Through the comparisons of all these factors, air pulse excitation property and the aeroelastic behavior of composite material plate are estimated. It would provide a possible way to guide the next-step experimental work with the pulsed air rig. The new composite fan blade design can be evaluated through the process. 展开更多
关键词 aeroelasticity pulsed air jet composite plate
原文传递
Nonlinear dynamical behavior of Xenon atoms along dislocation lines in UO_(2+x) nuclear fuel
5
作者 SUI PengFei DAI ZhenHong 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第5期82-87,共6页
Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to trad... Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to traditional bubble formation mechanism. This phenomenon is very important in understanding the properties of nuclear fuel. In this work, we apply a time- dependent microscopic atom transport equation and take into account stress coherent potential in the boundary of the dislocation. Using the equation, we numerically solved the stress coherence effect and studied the transfer properties of Xenon atoms along the dislocation line. Our numerical results show that the transport of the Xenon atoms along the dislocation changes nonlinearly with the external driving energy, and reaches at the saturation values. It explains the growth limit of Xenon atom bubbles that is in agreement with the experiment results. 展开更多
关键词 nonlinear atom transport dislocation line nuclear fuel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部