This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusio...This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.展开更多
The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cr...The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.展开更多
Conventional coupled BE/FE (Boundary-Element/Finite-Element) method and modeling of structural-acoustic interaction has shown its promise and potential in the design and analysis of various structural-acoustic inter...Conventional coupled BE/FE (Boundary-Element/Finite-Element) method and modeling of structural-acoustic interaction has shown its promise and potential in the design and analysis of various structural-acoustic interaction applications. Unified combined acoustic and aerodynamic loading on the structure is synthesized using two approaches. Firstly, by linear superposition of the acoustic pressure disturbance to the aeroelastic problem, the effect of acoustic pressure disturbance to the aeroelastic structure is considered to consist of structural motion independent incident acoustic pressure and structural motion dependent acoustic pressure, which is known as the scattering pressure, referred here as the acoustic aerodynamic analogy. Secondly, by synthesizing the acoustic and aerodynamic effects on elastic structure using an elegant, effective and unified approach, both acoustic and aerodynamic effect on solid structural boundaries can be formulated as a boundary value problem governed by second order differential equations which lead to solutions expressible as surface integral equations. The unified formulation of the acousto-aeroelastic problem is amenable for simultaneous solution, although certain prevailing situations allow the solution of the equations independently. For this purpose, the unsteady aerodynamic problem which was earlier utilizes well-established lifting surface method is reformulated using Boundary Element (BE) approach. These schemes are outlined and worked out with examples.展开更多
To investigate the aerodynamic effect of wind barriers on a high-speed train-bridge system,a sectional model test was conducted in a closed-circuit-type wind tunnel.Several different cases,including with and without b...To investigate the aerodynamic effect of wind barriers on a high-speed train-bridge system,a sectional model test was conducted in a closed-circuit-type wind tunnel.Several different cases,including with and without barriers,with different barrier heights and porosity rates,and with different train arrangements on the bridge were taken into consideration;in addition,the aerodynamic coefficients of the train-bridge system were measured.It is found that the side force and rolling moment coefficients of the vehicle are efficiently reduced by a single-side wind barrier,but for the bridge deck these values are increased.The height and porosity rate of the barrier are two important factors that influence the windbreak effect.Train arrangement on the bridge will considerably influence the aerodynamic properties of the train-bridge system.The side force and rolling moment coefficients of the vehicle at the windward side are larger than at the leeward side.展开更多
A numerical investigation on the aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor is conducted through three-dimensional CFD analysis.The results show that...A numerical investigation on the aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor is conducted through three-dimensional CFD analysis.The results show that the flow,especially near the diffuser inlet,is influenced by the axial misalignment obviously.When the impeller offsets to one side,the pressure at diffuser inlet close to this side will descend,and the vortex in the cavity on the other side will partially enter the diffuser and then result in the back flow.The performances of the stage and its components also change with the impeller-diffuser axial misalignment.There exists an optimum offset making the efficiency maximum at a given operating point.Furthermore,the effect of impeller-diffuser axial misalignment on the axial thrust is pronounced.The axial thrust is nearly increased linearly with the increase of axial misalignment.The aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor behaves more remarkably at the large flow rate.To alleviate the aerodynamic effects of impeller-diffuser misalignment,a rounding in the meridional plane at the diffuser inlet can be applied.展开更多
This paper reviews the development of forced motion apparatuses(FMAs) and their applications in wind engineering. A kind of FMA has been developed to investigate nonlinear and nonstationary aerodynamic forces consider...This paper reviews the development of forced motion apparatuses(FMAs) and their applications in wind engineering. A kind of FMA has been developed to investigate nonlinear and nonstationary aerodynamic forces considering the coupled effects of multiple degrees of freedom(DOFs). This apparatus can make section models to vibrate in a prescribed displacement defined by a numerical signal in time domain, including stationary and nonstationary movements with time-variant amplitudes and frequencies and even stochastic displacements. A series of validation tests show that the apparatus can re-illustrate various motions with enough precision in 3 D coupled states of two linear displacements and one torsional displacement. To meet the requirement of aerodynamic modeling, the flutter derivatives of a box girder section are identified, verifying its accuracy and feasibility by comparing with previously reported results. By simulating the nonstationary vibration with time-variant amplitude, the phenomena of frequency multiplication and memory effects are examined. In addition to studying the aerodynamics of a bluff body under large amplitudes and nonstationary vibrations, some potential applications of the proposed FMA are discussed in vehicle-bridge-wind dynamic analysis, pile-soil interaction, and line-tower coupled vibration aerodynamics in structural engineering.展开更多
The unsteady Reynolds-averaged Navier-Stokes equations coupled with the k-co SST turbulence model are solved to obtain the steady and unsteady aerodynamic forces for airfoils and wings. The effects of vibration types ...The unsteady Reynolds-averaged Navier-Stokes equations coupled with the k-co SST turbulence model are solved to obtain the steady and unsteady aerodynamic forces for airfoils and wings. The effects of vibration types and amplitudes on aerody- namic forces of airfoils and wings are studied. The deformation characteristics of a swept wing induced by steady aerodynamic load are presented. It is found that for a vibrating elastic wing at small and medium incidences, its mean aerodynamic loads are almost the same as those obtained from the static one. On the contrary, at high incidences especially around the stall incidence, the vibration may change the mean values. In addition, the larger amplitude is, the larger discrepancy will be. For a swept wing, the steady aerodynamic loads usually lead to the "pitching down" effect on the wing tip which delays the stall compared with a rigid one; But this phenomenon dose not occur on a aeroelastic wing which can induce the separation ahead and trigger the stall. The above conclusions are in good agreement with the scatter characteristics of wind-tunnel data. The reason why the data obtained from wind tunnel and CFD are different is also analyzed. Meanwhile, it can be an explanation for scatter phe- nomenon of wind-tunnel data, especially for high incidence cases, which remains a puzzle so far.展开更多
Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to trad...Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to traditional bubble formation mechanism. This phenomenon is very important in understanding the properties of nuclear fuel. In this work, we apply a time- dependent microscopic atom transport equation and take into account stress coherent potential in the boundary of the dislocation. Using the equation, we numerically solved the stress coherence effect and studied the transfer properties of Xenon atoms along the dislocation line. Our numerical results show that the transport of the Xenon atoms along the dislocation changes nonlinearly with the external driving energy, and reaches at the saturation values. It explains the growth limit of Xenon atom bubbles that is in agreement with the experiment results.展开更多
基金Supported by The Japan Science Society(Foundation: Grant No.23-708K)
文摘This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.
基金Supported by the National Natural Science Foundation of China (20876107) the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B06)
文摘The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.
文摘Conventional coupled BE/FE (Boundary-Element/Finite-Element) method and modeling of structural-acoustic interaction has shown its promise and potential in the design and analysis of various structural-acoustic interaction applications. Unified combined acoustic and aerodynamic loading on the structure is synthesized using two approaches. Firstly, by linear superposition of the acoustic pressure disturbance to the aeroelastic problem, the effect of acoustic pressure disturbance to the aeroelastic structure is considered to consist of structural motion independent incident acoustic pressure and structural motion dependent acoustic pressure, which is known as the scattering pressure, referred here as the acoustic aerodynamic analogy. Secondly, by synthesizing the acoustic and aerodynamic effects on elastic structure using an elegant, effective and unified approach, both acoustic and aerodynamic effect on solid structural boundaries can be formulated as a boundary value problem governed by second order differential equations which lead to solutions expressible as surface integral equations. The unified formulation of the acousto-aeroelastic problem is amenable for simultaneous solution, although certain prevailing situations allow the solution of the equations independently. For this purpose, the unsteady aerodynamic problem which was earlier utilizes well-established lifting surface method is reformulated using Boundary Element (BE) approach. These schemes are outlined and worked out with examples.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB036203)the National Natural Science Foundation of China(Grant No.51308034)the"111"Project(Grant No.B13002)
文摘To investigate the aerodynamic effect of wind barriers on a high-speed train-bridge system,a sectional model test was conducted in a closed-circuit-type wind tunnel.Several different cases,including with and without barriers,with different barrier heights and porosity rates,and with different train arrangements on the bridge were taken into consideration;in addition,the aerodynamic coefficients of the train-bridge system were measured.It is found that the side force and rolling moment coefficients of the vehicle are efficiently reduced by a single-side wind barrier,but for the bridge deck these values are increased.The height and porosity rate of the barrier are two important factors that influence the windbreak effect.Train arrangement on the bridge will considerably influence the aerodynamic properties of the train-bridge system.The side force and rolling moment coefficients of the vehicle at the windward side are larger than at the leeward side.
基金supported by the National Natural Science Foundation of China(Grant No.51236006)China Postdoctoral Science Foundation(Grant No.2012M521771)
文摘A numerical investigation on the aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor is conducted through three-dimensional CFD analysis.The results show that the flow,especially near the diffuser inlet,is influenced by the axial misalignment obviously.When the impeller offsets to one side,the pressure at diffuser inlet close to this side will descend,and the vortex in the cavity on the other side will partially enter the diffuser and then result in the back flow.The performances of the stage and its components also change with the impeller-diffuser axial misalignment.There exists an optimum offset making the efficiency maximum at a given operating point.Furthermore,the effect of impeller-diffuser axial misalignment on the axial thrust is pronounced.The axial thrust is nearly increased linearly with the increase of axial misalignment.The aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor behaves more remarkably at the large flow rate.To alleviate the aerodynamic effects of impeller-diffuser misalignment,a rounding in the meridional plane at the diffuser inlet can be applied.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC0809600 and 2018YFC0809604)the National Natural Science Foundation of China(No.51678451)the Independent Subject of State Key Laboratory of Disaster Reduction in Civil Engineering(No.SLDRCE19-B-11),Tongji University,China。
文摘This paper reviews the development of forced motion apparatuses(FMAs) and their applications in wind engineering. A kind of FMA has been developed to investigate nonlinear and nonstationary aerodynamic forces considering the coupled effects of multiple degrees of freedom(DOFs). This apparatus can make section models to vibrate in a prescribed displacement defined by a numerical signal in time domain, including stationary and nonstationary movements with time-variant amplitudes and frequencies and even stochastic displacements. A series of validation tests show that the apparatus can re-illustrate various motions with enough precision in 3 D coupled states of two linear displacements and one torsional displacement. To meet the requirement of aerodynamic modeling, the flutter derivatives of a box girder section are identified, verifying its accuracy and feasibility by comparing with previously reported results. By simulating the nonstationary vibration with time-variant amplitude, the phenomena of frequency multiplication and memory effects are examined. In addition to studying the aerodynamics of a bluff body under large amplitudes and nonstationary vibrations, some potential applications of the proposed FMA are discussed in vehicle-bridge-wind dynamic analysis, pile-soil interaction, and line-tower coupled vibration aerodynamics in structural engineering.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072199 and 10872171)
文摘The unsteady Reynolds-averaged Navier-Stokes equations coupled with the k-co SST turbulence model are solved to obtain the steady and unsteady aerodynamic forces for airfoils and wings. The effects of vibration types and amplitudes on aerody- namic forces of airfoils and wings are studied. The deformation characteristics of a swept wing induced by steady aerodynamic load are presented. It is found that for a vibrating elastic wing at small and medium incidences, its mean aerodynamic loads are almost the same as those obtained from the static one. On the contrary, at high incidences especially around the stall incidence, the vibration may change the mean values. In addition, the larger amplitude is, the larger discrepancy will be. For a swept wing, the steady aerodynamic loads usually lead to the "pitching down" effect on the wing tip which delays the stall compared with a rigid one; But this phenomenon dose not occur on a aeroelastic wing which can induce the separation ahead and trigger the stall. The above conclusions are in good agreement with the scatter characteristics of wind-tunnel data. The reason why the data obtained from wind tunnel and CFD are different is also analyzed. Meanwhile, it can be an explanation for scatter phe- nomenon of wind-tunnel data, especially for high incidence cases, which remains a puzzle so far.
基金financially supported by the Budget for Nuclear Research of the Ministryof Education,Culture,Sports,Science and Technology,based on the screening and counseling by the Atomic Energy Commission of Japan
文摘Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to traditional bubble formation mechanism. This phenomenon is very important in understanding the properties of nuclear fuel. In this work, we apply a time- dependent microscopic atom transport equation and take into account stress coherent potential in the boundary of the dislocation. Using the equation, we numerically solved the stress coherence effect and studied the transfer properties of Xenon atoms along the dislocation line. Our numerical results show that the transport of the Xenon atoms along the dislocation changes nonlinearly with the external driving energy, and reaches at the saturation values. It explains the growth limit of Xenon atom bubbles that is in agreement with the experiment results.