The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the ...The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the bypass ratio and the scarf angle on the mixing performance for the scarfed lobed mixer. Results show that the scarfed lobed mixer is reduced in the system weight. Meanwhile, aerodynamic performances are slightly improved compared with the normal lobed mixer. Two reasons for causing the mixing enhancement between the core and the bypass flow are as follows: (1) The stream-wise vortices shed from the training edge of the half/full scarfed lobed mixer earlier is enhanced by about 25%. (2) The mixing augmentation is also associated with the increase of the interface length caused by scarfing. The thermal mixing efficiency is enhanced with the increase of the bypass ratio and the scarfing angle. The scarfed lobed mixer design has no negative effects on the pressure loss. The total pressure recovery coefficient reaches above 0. 935 in various bypass ratios and scarfed angles. As the bypass ratio increases, the total pressure recovery coefficient also increases for the scarfed lobed mixer.展开更多
In this paper, the flow field is assumed to be inviscid, irrotational and incompressible, triangular elements are adopted to discretize the boundary of flow field, the boundary integral method is used to solve the flo...In this paper, the flow field is assumed to be inviscid, irrotational and incompressible, triangular elements are adopted to discretize the boundary of flow field, the boundary integral method is used to solve the flow field and the Mixed-Eulerian-Lagrangian method is applied to simulate the evolution of bubble. Three-dimensional smoothing method is used to smooth the bubble surface and the velocity potential to make the computing process more accurate and stable. In the analysis process, three-dimensional model simulates the dynamics of a bubble in the free field, gravitational field and near the rigid wall respectively, and the calculated results coincide well with the exact results and experimental data, which show that the algorithm and 3D model in this paper are of high accuracy. Calculation process indicates that bubble takes on strong non-linear under the combine effect of gravity and rigid wall.展开更多
To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models...To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train.展开更多
Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and t...Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-(lioration) of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered.展开更多
The permselectivity of H2/O2, H2/N2, H2/CO, and H2/CH4 mixtures passing a graphdiyne membrane is studied by molecular dynamics simulations. At pressure range of 0.047-4.5 GPa, H2 can pass the graphdiyen membrane quick...The permselectivity of H2/O2, H2/N2, H2/CO, and H2/CH4 mixtures passing a graphdiyne membrane is studied by molecular dynamics simulations. At pressure range of 0.047-4.5 GPa, H2 can pass the graphdiyen membrane quickly, while all the O2, N2, CO, and CH4 molecules are blocked. At pressure of 47 kPa, the hydrogen flow is 7 mol/m^2s. With increase of pressure, the hydrogen flow goes up, and reaches maximum of 6×10^5 mol/m^2s at 1.5 GPa. Compared to other known membranes, graphdiyne can be used for means of hydrogen purification with the best balance of high selectivity and high permeance.展开更多
Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronauti...Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronautical and astronautical,transportation,hydraulic and nuclear engineering. In this paper,advances and re-search needs in fundamental studies of dispersed multiphase flows,including the particle/droplet/bubble dynamics,particle-particle,droplet-droplet and bubble-bubble interactions,gas-particle and bubble-liquid turbulence interac-tions,particle-wall interaction,numerical simulation of dispersed multiphase flows,including Reynolds-averaged modeling(RANS modeling),large-eddy simulation(LES) and direct numerical simulation(DNS) are reviewed. The research results obtained by the present author are also included in this review.展开更多
Improved fluid dynamics can enhance the separation efficiency of flotation methods. A Computational Fluid Dynamics simulation using FLUENT was performed to model the fluid environment of a cyclonic-sta- tic micro bubb...Improved fluid dynamics can enhance the separation efficiency of flotation methods. A Computational Fluid Dynamics simulation using FLUENT was performed to model the fluid environment of a cyclonic-sta- tic micro bubble flotation column. The simulation results visually show the interior flow and illustrate mix- ing of the different flows within the apparatus. An analysis of the distribution in velocity and vorticity was used to analyze the separation mechanism and the synergism of the component parts and to strengthen the design of each unit. The conclusions are that axial back mixing and vortexes still exist in the separation unit even in the presence of packing media. The inverted cone structure near the tangential inlet (cone 1 ) within the cyclonic unit is the main reason for this. The cone 1 structure enhances swirling and focuses energy within the inner area of the cone where there are abundant bubbles. As a result slowly floating minerals are forcibly recovered and railings are effectively separated within this unit. However, cone 1 also reduces the vorticity downstream from it, which reduces the efficiency of railings separation within this part. Therefore, the design of cone 1 should be based on the principles of lessening disturbances to the column unit while strengthening the separation effect of the cyclonic unit. Also, the axial distance between the paired cyclonic structures at the bottom of the column (cone 2) and cone 1 poses tough requirements because of an interaction between separation of the middlings and railings.展开更多
This research is on horizontal plane motion equations of Air Cushion Vehicle (ACV) and its simulation. To investigate this, a lot of simulation study including ACV's voyage and turning performance has been done. I...This research is on horizontal plane motion equations of Air Cushion Vehicle (ACV) and its simulation. To investigate this, a lot of simulation study including ACV's voyage and turning performance has been done. It was found that the voyage simulation results were accorded with ACV own characteristic and turning simulation results were accorded with USA ACV's movement characteristic basically.展开更多
A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible flu...A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.展开更多
This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipelin...This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator). The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enter-prise.展开更多
We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating forma...We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating formaldehyde emission in twelve different cases was developed for obtaining formaldehyde concentration by the area-weighted average method.Laboratory experiments were conducted in an environment chamber to validate the simulation results of twelve different cases and the formaldehyde concentration was measured by continuous sampling.The results show that there was good agreement between the model prediction and the experimental values within 4.3 difference for each case.The CFD simulation results varied in the range from 0.21 mg/m3 to 0.94 mg/m3,and the measuring results in the range from 0.17 mg/m3 to 0.87 mg/m3.The variation trend of formaldehyde concentration with supply air rate and temperature variation for CFD simulation and experiment measuring was consistent.With the existence of steady formaldehyde emission sources,formaldehyde concentration generally increased with the increase of temperature,and it decreased with the increase of air supply rate.We also provided some reasonable suggestions to reduce formaldehyde concentration and to improve indoor air quality for newly decorated rooms.展开更多
Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hy...Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.展开更多
In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the eff...In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the effect of hydrodynamic forces controlling CBM reservoir formations was studied by a physical simulation experiment in which we used CBM reservoir simulation facilities. The hydrodynamic conditions of high coal rank reservoirs in the Qinshui basin were analyzed. Our experiment shows the following results: under strong hydrodynamic alternating action, 6C~ of coalbed methane reservoir changed from the start at -2.95% ~ -3.66%, and the lightening process occurred in phases; the CI-I4 volume reduced from 96.35% to 12.42%; the CO2 vo- lume decreased from 0.75% in sample 1 to 0.68% in sample 2, then rose to 1.13% in sample 3; the N2 volume changed from 2.9% in sample 1 to 86.45% in sample 3. On one hand, these changes show the complexity of CBM reservoir formation; on the other hand, they indicate that strong hydrodynamic actions have an unfavorable impact on CBM reservoir formation. It was found that the gas volume and hydrodynamic intensity were negatively correlated and low hydrodynamic flow conditions might result in highly productive and enriched areas of high rank CBM.展开更多
CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a m...CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a momentum sink added to themomentum equation.Gas desorption from the caved goaf and destressed coal seamswithin the mining disturbed area was modelled as additional mass sources in the continuityequation.These CFD models were developed according to specific Iongwall layoutsand calibrated against field monitoring data.Two case studies were presented demonstratingthe application of CFD modelling of goaf gas flow characteristics for improved goafgas capture and the reduction of oxygen ingress into the goaf areas for self-heating prevention.Results from the case studies indicate that the optimum goaf drainage strategywould be a combination of shallow (near the face) and deep holes to improve the overalldrainage efficiency and gas purity.For gassy Iongwall faces retreating against the seam dip,it is recommended to conduct cross-measure roof hole drainage targeting the fracturedzones overlying the return corner,rather than high capacity surface goaf drainage deep inthe goaf.展开更多
A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal ...A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal and oblique impacts.A square-root correction for neck bases was modified in accuracy as well as scope of applications.In addition,process of jet formation and evolution was studied to reveal internal dynamics in drop impacts.It's found that pressure gradient and vortex are coexisting and completive reasons for jet topology while the inclined angle has a significant effect on them.Mechanisms of jet formation and evolution are different in the front and back necks.With the help of PDF distribution and correction calculation,a compromise in the competition is observed.This work lays a solid foundation for further studies of dynamics in gas-liquid flows.展开更多
基金Supported by the Civil Aviation Research Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the bypass ratio and the scarf angle on the mixing performance for the scarfed lobed mixer. Results show that the scarfed lobed mixer is reduced in the system weight. Meanwhile, aerodynamic performances are slightly improved compared with the normal lobed mixer. Two reasons for causing the mixing enhancement between the core and the bypass flow are as follows: (1) The stream-wise vortices shed from the training edge of the half/full scarfed lobed mixer earlier is enhanced by about 25%. (2) The mixing augmentation is also associated with the increase of the interface length caused by scarfing. The thermal mixing efficiency is enhanced with the increase of the bypass ratio and the scarfing angle. The scarfed lobed mixer design has no negative effects on the pressure loss. The total pressure recovery coefficient reaches above 0. 935 in various bypass ratios and scarfed angles. As the bypass ratio increases, the total pressure recovery coefficient also increases for the scarfed lobed mixer.
文摘In this paper, the flow field is assumed to be inviscid, irrotational and incompressible, triangular elements are adopted to discretize the boundary of flow field, the boundary integral method is used to solve the flow field and the Mixed-Eulerian-Lagrangian method is applied to simulate the evolution of bubble. Three-dimensional smoothing method is used to smooth the bubble surface and the velocity potential to make the computing process more accurate and stable. In the analysis process, three-dimensional model simulates the dynamics of a bubble in the free field, gravitational field and near the rigid wall respectively, and the calculated results coincide well with the exact results and experimental data, which show that the algorithm and 3D model in this paper are of high accuracy. Calculation process indicates that bubble takes on strong non-linear under the combine effect of gravity and rigid wall.
基金Project(2017T001-G)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(2017YFB1201204)supported by the National Key Research and Development Program of China+2 种基金Project(U1534206)supported by the National Natural Science Foundation of ChinaProject(2015CX006)supported by the Innovation-driven Plan in Central South University,ChinaProject(2017zzts521)supported by the Fundamental Research Funds for the Central Universities,China
文摘To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train.
文摘Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-(lioration) of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natu- ral Science Foundation of China (No.20603032 and 20733004), the National Key Basic Research Program (No.2011CB921400), the Foundation of National Excellent Doctoral Dissertation of China (No.200736), the Fundamental Research Funds for the Central Universities (No.WK2340000006 and No.WK2060140005), and the Shanghai Supercomputer Center, the USTC-HP HPC Project, and the SCCAS.
文摘The permselectivity of H2/O2, H2/N2, H2/CO, and H2/CH4 mixtures passing a graphdiyne membrane is studied by molecular dynamics simulations. At pressure range of 0.047-4.5 GPa, H2 can pass the graphdiyen membrane quickly, while all the O2, N2, CO, and CH4 molecules are blocked. At pressure of 47 kPa, the hydrogen flow is 7 mol/m^2s. With increase of pressure, the hydrogen flow goes up, and reaches maximum of 6×10^5 mol/m^2s at 1.5 GPa. Compared to other known membranes, graphdiyne can be used for means of hydrogen purification with the best balance of high selectivity and high permeance.
基金Supported by the Key Projects of National Natural Science Foundation of China (50736006 9587003-13) the State Key Development Program for Basic Research of China (G1999-0222-08) the National Pandeng Project of China (85-06-1-2)
文摘Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronautical and astronautical,transportation,hydraulic and nuclear engineering. In this paper,advances and re-search needs in fundamental studies of dispersed multiphase flows,including the particle/droplet/bubble dynamics,particle-particle,droplet-droplet and bubble-bubble interactions,gas-particle and bubble-liquid turbulence interac-tions,particle-wall interaction,numerical simulation of dispersed multiphase flows,including Reynolds-averaged modeling(RANS modeling),large-eddy simulation(LES) and direct numerical simulation(DNS) are reviewed. The research results obtained by the present author are also included in this review.
基金supported by the National Natural Science Foundation of China (No. 51074157)the Foundation of China University of Mining and Technology (No. 2011QNA08)
文摘Improved fluid dynamics can enhance the separation efficiency of flotation methods. A Computational Fluid Dynamics simulation using FLUENT was performed to model the fluid environment of a cyclonic-sta- tic micro bubble flotation column. The simulation results visually show the interior flow and illustrate mix- ing of the different flows within the apparatus. An analysis of the distribution in velocity and vorticity was used to analyze the separation mechanism and the synergism of the component parts and to strengthen the design of each unit. The conclusions are that axial back mixing and vortexes still exist in the separation unit even in the presence of packing media. The inverted cone structure near the tangential inlet (cone 1 ) within the cyclonic unit is the main reason for this. The cone 1 structure enhances swirling and focuses energy within the inner area of the cone where there are abundant bubbles. As a result slowly floating minerals are forcibly recovered and railings are effectively separated within this unit. However, cone 1 also reduces the vorticity downstream from it, which reduces the efficiency of railings separation within this part. Therefore, the design of cone 1 should be based on the principles of lessening disturbances to the column unit while strengthening the separation effect of the cyclonic unit. Also, the axial distance between the paired cyclonic structures at the bottom of the column (cone 2) and cone 1 poses tough requirements because of an interaction between separation of the middlings and railings.
文摘This research is on horizontal plane motion equations of Air Cushion Vehicle (ACV) and its simulation. To investigate this, a lot of simulation study including ACV's voyage and turning performance has been done. It was found that the voyage simulation results were accorded with ACV own characteristic and turning simulation results were accorded with USA ACV's movement characteristic basically.
基金the National Natural Science Foundation of China (No.50074035).
文摘A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.
文摘This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator). The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enter-prise.
基金Funded by National Science Foundation(No.50778415 and No.50878177)
文摘We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating formaldehyde emission in twelve different cases was developed for obtaining formaldehyde concentration by the area-weighted average method.Laboratory experiments were conducted in an environment chamber to validate the simulation results of twelve different cases and the formaldehyde concentration was measured by continuous sampling.The results show that there was good agreement between the model prediction and the experimental values within 4.3 difference for each case.The CFD simulation results varied in the range from 0.21 mg/m3 to 0.94 mg/m3,and the measuring results in the range from 0.17 mg/m3 to 0.87 mg/m3.The variation trend of formaldehyde concentration with supply air rate and temperature variation for CFD simulation and experiment measuring was consistent.With the existence of steady formaldehyde emission sources,formaldehyde concentration generally increased with the increase of temperature,and it decreased with the increase of air supply rate.We also provided some reasonable suggestions to reduce formaldehyde concentration and to improve indoor air quality for newly decorated rooms.
基金Supported by the Doctoral Foundation of China (20050251006)
文摘Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.
基金Project 2002CB211705 supported by the National Basic Research Program of China
文摘In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the effect of hydrodynamic forces controlling CBM reservoir formations was studied by a physical simulation experiment in which we used CBM reservoir simulation facilities. The hydrodynamic conditions of high coal rank reservoirs in the Qinshui basin were analyzed. Our experiment shows the following results: under strong hydrodynamic alternating action, 6C~ of coalbed methane reservoir changed from the start at -2.95% ~ -3.66%, and the lightening process occurred in phases; the CI-I4 volume reduced from 96.35% to 12.42%; the CO2 vo- lume decreased from 0.75% in sample 1 to 0.68% in sample 2, then rose to 1.13% in sample 3; the N2 volume changed from 2.9% in sample 1 to 86.45% in sample 3. On one hand, these changes show the complexity of CBM reservoir formation; on the other hand, they indicate that strong hydrodynamic actions have an unfavorable impact on CBM reservoir formation. It was found that the gas volume and hydrodynamic intensity were negatively correlated and low hydrodynamic flow conditions might result in highly productive and enriched areas of high rank CBM.
文摘CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a momentum sink added to themomentum equation.Gas desorption from the caved goaf and destressed coal seamswithin the mining disturbed area was modelled as additional mass sources in the continuityequation.These CFD models were developed according to specific Iongwall layoutsand calibrated against field monitoring data.Two case studies were presented demonstratingthe application of CFD modelling of goaf gas flow characteristics for improved goafgas capture and the reduction of oxygen ingress into the goaf areas for self-heating prevention.Results from the case studies indicate that the optimum goaf drainage strategywould be a combination of shallow (near the face) and deep holes to improve the overalldrainage efficiency and gas purity.For gassy Iongwall faces retreating against the seam dip,it is recommended to conduct cross-measure roof hole drainage targeting the fracturedzones overlying the return corner,rather than high capacity surface goaf drainage deep inthe goaf.
基金Supported by the National Natural Science Foundation of China(91541202,51276163)
文摘A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal and oblique impacts.A square-root correction for neck bases was modified in accuracy as well as scope of applications.In addition,process of jet formation and evolution was studied to reveal internal dynamics in drop impacts.It's found that pressure gradient and vortex are coexisting and completive reasons for jet topology while the inclined angle has a significant effect on them.Mechanisms of jet formation and evolution are different in the front and back necks.With the help of PDF distribution and correction calculation,a compromise in the competition is observed.This work lays a solid foundation for further studies of dynamics in gas-liquid flows.