The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was c...The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge.展开更多
To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given...To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given out and the transition process from the helicopter mode to the airplane mode is designed. The lift system consists of a circular disk-wing with four retractable blades. The technology of individual blade control is adopted for flight control in hover and low speed flight. The tail is a vectored thrust duct propeller. It can provide the anti-torque in hover, and offer the multi-directional controls and propulsion drive for the airplane mode flight. The aerodynamic characteristics and key technologies in the transition process for this layout, including the nose up angle of disk-wing, the length of the blade, rotation speed, pitch angle and other parameters, are theoretically ana lyzed and experimentally tested. Calculation and experiments show that the shift process of the lift, the power and controls are smooth, and the designed scheme is feasible.展开更多
The Savonius rotor is a vertical axis-wind machine composed of two half cylindrical blades presenting a central gap. It is a slow velocity machine compared with horizontal wind machines. Its efficiency is about twenty...The Savonius rotor is a vertical axis-wind machine composed of two half cylindrical blades presenting a central gap. It is a slow velocity machine compared with horizontal wind machines. Its efficiency is about twenty per cent. In this work experimental tests are presented using two kind of deflectors placed in front of the resistive blade. Such disposition allows to hide the resistant blade and to guide the flow toward the motrice blade. Two deflectors have been used: a short one and a long one. The results obtained in wind tunnel have shown that the long deflector is the more efficient, essentially for high values of the tip speed ratio. One has been interested, using a numerical approach, in the study of the influence of a wall on the aerodynamical field near the rotor.展开更多
Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods a...Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods are mostly used in previous aeroservoelastic studies.However,series of assumptions and simplification on structures,aerodynamics and flight control systems are unavoidably introduced,and various nonlinear factors are also ignored,therefore,they result in considerable errors.A novel method called aeroservoelasticity semi-physical simulation test is proposed in this paper,which takes the flexible missile with control system as the test object.Vibration signals at several locations of the missile are measured by accelerometers,then corresponding unsteady aerodynamics is computed based on the fact that airflow at high Mach is nearly quasi-steady,and finally unsteady aerodynamics is exerted simultaneously by shakers at certain locations of the missile.The aeroservoelasticity semi-physical simulation test system can be constructed after the control system is closed.Open loop transfer function test and closed loop stability test are carried out in sequence.The test principle and method proposed in this paper are verified by the concordance between the results of numerical simulation and experiment.展开更多
基金Sponsored by the Key Project of the National Natural Science Foundation of China (Grant No.90715039)
文摘The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge.
文摘To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given out and the transition process from the helicopter mode to the airplane mode is designed. The lift system consists of a circular disk-wing with four retractable blades. The technology of individual blade control is adopted for flight control in hover and low speed flight. The tail is a vectored thrust duct propeller. It can provide the anti-torque in hover, and offer the multi-directional controls and propulsion drive for the airplane mode flight. The aerodynamic characteristics and key technologies in the transition process for this layout, including the nose up angle of disk-wing, the length of the blade, rotation speed, pitch angle and other parameters, are theoretically ana lyzed and experimentally tested. Calculation and experiments show that the shift process of the lift, the power and controls are smooth, and the designed scheme is feasible.
文摘The Savonius rotor is a vertical axis-wind machine composed of two half cylindrical blades presenting a central gap. It is a slow velocity machine compared with horizontal wind machines. Its efficiency is about twenty per cent. In this work experimental tests are presented using two kind of deflectors placed in front of the resistive blade. Such disposition allows to hide the resistant blade and to guide the flow toward the motrice blade. Two deflectors have been used: a short one and a long one. The results obtained in wind tunnel have shown that the long deflector is the more efficient, essentially for high values of the tip speed ratio. One has been interested, using a numerical approach, in the study of the influence of a wall on the aerodynamical field near the rotor.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716006,10902006)
文摘Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods are mostly used in previous aeroservoelastic studies.However,series of assumptions and simplification on structures,aerodynamics and flight control systems are unavoidably introduced,and various nonlinear factors are also ignored,therefore,they result in considerable errors.A novel method called aeroservoelasticity semi-physical simulation test is proposed in this paper,which takes the flexible missile with control system as the test object.Vibration signals at several locations of the missile are measured by accelerometers,then corresponding unsteady aerodynamics is computed based on the fact that airflow at high Mach is nearly quasi-steady,and finally unsteady aerodynamics is exerted simultaneously by shakers at certain locations of the missile.The aeroservoelasticity semi-physical simulation test system can be constructed after the control system is closed.Open loop transfer function test and closed loop stability test are carried out in sequence.The test principle and method proposed in this paper are verified by the concordance between the results of numerical simulation and experiment.