Wind microturbines typically have rotor diameters of 2 m or less. This paper presents theoretical expressions that can be used to determine the aerodynamic performance of wind microturbines. A commercially-available t...Wind microturbines typically have rotor diameters of 2 m or less. This paper presents theoretical expressions that can be used to determine the aerodynamic performance of wind microturbines. A commercially-available three-bladed microturbine was tested at the outlet plane of a wind tunnel. The cross-section dimensions of the wind tunnel jet are 2.5 m (horizontal) x 1.5 m (vertical). The tested microturbine has a diameter of 1.2 m, and it generates a maximum power output of about 300 W. The paper provides the wind tunnel test methodology that was used to determine the mean and fluctuating forces generated by the aforementioned wind microturbine. Both the static and dynamic responses of the turbine were measured, and results from this testing are presented in this paper. These results enable the trends and predictions of the theoretical expressions to be compared with wind tunnel measurements. It is shown that, for this particular microturbine, the behaviours of these test measurements are consistent with the expected theoretical predictions.展开更多
To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the...To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.展开更多
文摘Wind microturbines typically have rotor diameters of 2 m or less. This paper presents theoretical expressions that can be used to determine the aerodynamic performance of wind microturbines. A commercially-available three-bladed microturbine was tested at the outlet plane of a wind tunnel. The cross-section dimensions of the wind tunnel jet are 2.5 m (horizontal) x 1.5 m (vertical). The tested microturbine has a diameter of 1.2 m, and it generates a maximum power output of about 300 W. The paper provides the wind tunnel test methodology that was used to determine the mean and fluctuating forces generated by the aforementioned wind microturbine. Both the static and dynamic responses of the turbine were measured, and results from this testing are presented in this paper. These results enable the trends and predictions of the theoretical expressions to be compared with wind tunnel measurements. It is shown that, for this particular microturbine, the behaviours of these test measurements are consistent with the expected theoretical predictions.
基金supported by grants from the National Natural Science Foundation of China (No.51076144)the Major Special Project of Technology Office in Zhejiang Province (No.2011C11073, No.2011C16038)
文摘To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.