The energy consumption of buildings in urban areas is one of the greatest source of energy wasting and, consequently, ofincreasing of CO2 emission. Research is currently focused on the reduction of this consumption th...The energy consumption of buildings in urban areas is one of the greatest source of energy wasting and, consequently, ofincreasing of CO2 emission. Research is currently focused on the reduction of this consumption through the use of passive air-conditioning systems, that can be integrated with conventional systems and give rise to the so-called hybrid systems. Historically, these passive systems were developed in the Mediterranean and Middle East area. The research approach on this topic involves the application of design strategies and the development of computational tools and control systems. The development of the hybrid systems is the result of the synergy between current scientific knowledge, advanced manufacturing and information technology. In this study, a modular housing system has been investigated under different conditions. Simulations have been repeated, in order to identify the configuration that provides the highest indoor comfort. The analysis of the different conditions has been carried out using a CFD (computational fluid dynamic) software. The paper shows the results developed by the Dipartimento di Architettura of the Universit^t di Palermo in the analysis of the natural ventilation effect on the indoor comfort.展开更多
The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitiv...The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitivity is an important factor for the HAWT blade design.However,there is no criterion for evaluating roughness sensitivity of blade currently.In this paper,the performance influences of airfoil aerodynamic parameters were analyzed by the blade element momentum(BEM) method and 1.5 MW wind turbine blade.It showed that airfoil lift coefficient was the key parameter to the power output and axial thrust of HAWT.Moreover,the evaluation indicators of roughness sensitivity for the different spanwise airfoils of the pitch-regulated HAWT blade were proposed.Those respectively were the lift-to-drag ratio and lift coefficient without feedback system,the maximum lift-to-drag ratio and design lift coefficient with feedback system for the airfoils at outboard section of blade,and lift coefficient without feedback,maximum lift coefficient with feedback for the airfoils at other sections under the pitch-fixed and variable-speed operation.It is not necessary to consider the roughness when HWAT can be regulated to the rated power output by the pitch-regulated and invariable-speed operation.展开更多
文摘The energy consumption of buildings in urban areas is one of the greatest source of energy wasting and, consequently, ofincreasing of CO2 emission. Research is currently focused on the reduction of this consumption through the use of passive air-conditioning systems, that can be integrated with conventional systems and give rise to the so-called hybrid systems. Historically, these passive systems were developed in the Mediterranean and Middle East area. The research approach on this topic involves the application of design strategies and the development of computational tools and control systems. The development of the hybrid systems is the result of the synergy between current scientific knowledge, advanced manufacturing and information technology. In this study, a modular housing system has been investigated under different conditions. Simulations have been repeated, in order to identify the configuration that provides the highest indoor comfort. The analysis of the different conditions has been carried out using a CFD (computational fluid dynamic) software. The paper shows the results developed by the Dipartimento di Architettura of the Universit^t di Palermo in the analysis of the natural ventilation effect on the indoor comfort.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50976117 and 50836006)
文摘The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitivity is an important factor for the HAWT blade design.However,there is no criterion for evaluating roughness sensitivity of blade currently.In this paper,the performance influences of airfoil aerodynamic parameters were analyzed by the blade element momentum(BEM) method and 1.5 MW wind turbine blade.It showed that airfoil lift coefficient was the key parameter to the power output and axial thrust of HAWT.Moreover,the evaluation indicators of roughness sensitivity for the different spanwise airfoils of the pitch-regulated HAWT blade were proposed.Those respectively were the lift-to-drag ratio and lift coefficient without feedback system,the maximum lift-to-drag ratio and design lift coefficient with feedback system for the airfoils at outboard section of blade,and lift coefficient without feedback,maximum lift coefficient with feedback for the airfoils at other sections under the pitch-fixed and variable-speed operation.It is not necessary to consider the roughness when HWAT can be regulated to the rated power output by the pitch-regulated and invariable-speed operation.