According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was ...According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.展开更多
Anti-tank intelligent mine is a kind of new intelligent anti-tank bomb relying on high precision detector.It can effectively capture and damage targets with wind resistance coefficient and other factors affecting its ...Anti-tank intelligent mine is a kind of new intelligent anti-tank bomb relying on high precision detector.It can effectively capture and damage targets with wind resistance coefficient and other factors affecting its flight characteristics under consideration.This article is based on the three-dimensional model of intelligent mine.To analyze its subsonic and transonic flow fields and the change law of aerodynamic force factor with the growth of the angle of attack,computational fluid dynamics software is used for intelligent mine flow field numerical calculation and the change law of pressure center.The results show that the large drag coefficient is conducive to the stability of scanning.Drastic changes of the flow field near the intelligent mine will disable its scanning movement.The simulation results can provide a reference for scanning stability analysis,overall performance optimization and appearance improvement.展开更多
This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)analogy.The mechanism of the aerodynamic noise...This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)analogy.The mechanism of the aerodynamic noise in this area has been excavated.The aerodynamic excitation results show that the bogie divides the bogie compartment into two cavities,each of which contains a large circulating flow and presents multi-peak characteristics in the frequency domain.The far-field noise results suggest that in the speed range of 200−350 km/h,the aerodynamic noise mechanism in the bogie area is the same.Cavity noise is the main noise mechanism in the foremost bogie area,and the bogie divides the bogie cabin into two cavities,thereby changing the aerodynamic noise in this area.展开更多
A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law ...A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law of static pressure and velocity are characterized and analyzed. The relationship between the flowing state and the structure of the vortex spun yarn is also discussed. The research results can enhance the understanding of the yarn formation principle from viewpoint of the airflow field law inside the nozzle block of Murata vortex spinning.展开更多
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model...The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.展开更多
The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measure...The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.展开更多
To investigate the impacts of the quasi-biennial oscillation (QBO) on high-latitude circulation and the Arctic vortex, stratospheric zonal wind at 55-65°N is analyzed. The seasonal cycle, solar cycle, and linea...To investigate the impacts of the quasi-biennial oscillation (QBO) on high-latitude circulation and the Arctic vortex, stratospheric zonal wind at 55-65°N is analyzed. The seasonal cycle, solar cycle, and linear trend in the zonal wind at these latitudes are analyzed and removed, and the QBO signal is retrieved from the monthly zonal wind for the period 1979-2014. The zonal wind has a strong decreasing trend in winter, with a maximum decrease (less than -0.35 m s-1 yr-1) occurring within 70-100°E. The zonal wind has an in-phase response of 1.6 m s-1 to the solar cycle, with a maximum within 100-140°E. A clear QBO signal is detected in the zonal wind during the period 1979-2014, with an amplitude of 2.5 m s-1 and a period of 30 months. The latitudinal distribution of the QBO signal is inhomogeneous, with a maximum within 120-180°E and a minimum within 25-45°E.展开更多
This study investigates the microclimatic connections between underground systems and the hibernation sites of particular species of bats. The distribution of hibernating bats was analysed in five selected zones desig...This study investigates the microclimatic connections between underground systems and the hibernation sites of particular species of bats. The distribution of hibernating bats was analysed in five selected zones designated Ⅰ-Ⅴ. These zones have a similar relative humidity, diverse temperature ranges inside the system, as well as air flow rates. A multi-year research programme highlighted the relationships between the occurrence of hibernating bats of various species and the microclimate of these particular zones. What is of essential importance are the sites with an air flow in their zones exceeding 0.02 m·s^-1, then is temperature and humidity. The air flow determines more intensive settling of wintering bats (zones Ⅲ, Ⅳand Ⅴ). The zone Ⅱ-tourist zone with periodic air flows and often visited by humans is the least used by hibernating bats.展开更多
Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbul...Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbulent flow field. And the yaw angle of wind changes from transverse to longitudinal. Through full aero-elastic model testing, wind-induced vibration is checked, which includes vortex resonance, buffeting and galloping. Vortex resonance is observed and further studies are carried out by changing damping ratio. Based on wind tunnel testing results, wind-resistance of middle pylon is evaluated and some suggestions are given for middle pylon's construction.展开更多
The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far a...The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far above the bottom. Hydraulic mixing is essential in a solid-liquid two-phase flow process, in which large solid particles can be found at the initial stage and turn to being high-concentration viscous liquid (non-Newtonian fluid). A 0.75 m3 digester was taken as a case study with CFD (computational fluid dynamics) software. The basic pattern was simulated by using water as the medium and the pattern of pseudo plastic fluid state was simulated by the Euler-Euler Model, then the effect of optimized design with bottom inflow and high dispersed outlets could be verified. Viewed from the mixing effects, the velocity of 0.6 m/s is better than l m/s for water medium, while 1 m/s better than 0.6 m/s for pseudo plastic fluid medium.展开更多
Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them (instead of using the more common propeller-type blades). In the present study, three models...Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them (instead of using the more common propeller-type blades). In the present study, three models (cylinder with no fins, cylinder with straight fins and cylinder with spiral fins) were installed, and fluid force measurements were performed by a strain gauge force balance. A PIV (particle image velocimetry) system was used to better understand the flow fields around the cylinder. Considering the results of the experiment, it was confirmed that, the aerodynamic performance of the rotating cylinder can be improved by the fin. However, the straight fin makes the flow close to the cylinder surface ineffective. The rotary cylinder with the spiral fins was able to generate the greatest lift among three models, because the spiral fin effectively influences the vicinity of the cylinder surface.展开更多
基金Project(U1134203)supported by the National Natural Science Foundation of China
文摘According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.
基金National Natural Science Foundation of China(No.1157229)Graduate Student Education Innovation Project of Shanxi Province(No.2015SY58)
文摘Anti-tank intelligent mine is a kind of new intelligent anti-tank bomb relying on high precision detector.It can effectively capture and damage targets with wind resistance coefficient and other factors affecting its flight characteristics under consideration.This article is based on the three-dimensional model of intelligent mine.To analyze its subsonic and transonic flow fields and the change law of aerodynamic force factor with the growth of the angle of attack,computational fluid dynamics software is used for intelligent mine flow field numerical calculation and the change law of pressure center.The results show that the large drag coefficient is conducive to the stability of scanning.Drastic changes of the flow field near the intelligent mine will disable its scanning movement.The simulation results can provide a reference for scanning stability analysis,overall performance optimization and appearance improvement.
基金Project(2017YFB1201103)supported by the National Key Research and Development Plan of ChinaProject(2019zzts540)supported by the Graduate Student Independent Innovation Project of Central South University,China。
文摘This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)analogy.The mechanism of the aerodynamic noise in this area has been excavated.The aerodynamic excitation results show that the bogie divides the bogie compartment into two cavities,each of which contains a large circulating flow and presents multi-peak characteristics in the frequency domain.The far-field noise results suggest that in the speed range of 200−350 km/h,the aerodynamic noise mechanism in the bogie area is the same.Cavity noise is the main noise mechanism in the foremost bogie area,and the bogie divides the bogie cabin into two cavities,thereby changing the aerodynamic noise in this area.
基金This project is supported by the National Natural Science Foundation of China,under grant No.10872047.
文摘A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law of static pressure and velocity are characterized and analyzed. The relationship between the flowing state and the structure of the vortex spun yarn is also discussed. The research results can enhance the understanding of the yarn formation principle from viewpoint of the airflow field law inside the nozzle block of Murata vortex spinning.
基金Supported by the National 863 Project (2001AA642030-1) and Zhejiang Provincial Key Research Project (010007037).
文摘The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.
基金Supported by the National Natural Science Foundation of China (20476073), the State Key Laboratory of Chemical Engineering (SKL-ChE-08B03) and the Programs of Introducing Talents of Discipline to Universities 0306006).
文摘The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.
基金supported by the Special Fund for Meteorological Research in the Public Interest[grant number GYHY201206041]the projects entitled‘Comprehensive Evaluation of Polar Areas in Global and Regional Climate Changes’[grant number CHINARE2015–2019]‘Polar Environment Comprehensive Investigation and Assessment’[grant number CHINARE2015–2019]
文摘To investigate the impacts of the quasi-biennial oscillation (QBO) on high-latitude circulation and the Arctic vortex, stratospheric zonal wind at 55-65°N is analyzed. The seasonal cycle, solar cycle, and linear trend in the zonal wind at these latitudes are analyzed and removed, and the QBO signal is retrieved from the monthly zonal wind for the period 1979-2014. The zonal wind has a strong decreasing trend in winter, with a maximum decrease (less than -0.35 m s-1 yr-1) occurring within 70-100°E. The zonal wind has an in-phase response of 1.6 m s-1 to the solar cycle, with a maximum within 100-140°E. A clear QBO signal is detected in the zonal wind during the period 1979-2014, with an amplitude of 2.5 m s-1 and a period of 30 months. The latitudinal distribution of the QBO signal is inhomogeneous, with a maximum within 120-180°E and a minimum within 25-45°E.
文摘This study investigates the microclimatic connections between underground systems and the hibernation sites of particular species of bats. The distribution of hibernating bats was analysed in five selected zones designated Ⅰ-Ⅴ. These zones have a similar relative humidity, diverse temperature ranges inside the system, as well as air flow rates. A multi-year research programme highlighted the relationships between the occurrence of hibernating bats of various species and the microclimate of these particular zones. What is of essential importance are the sites with an air flow in their zones exceeding 0.02 m·s^-1, then is temperature and humidity. The air flow determines more intensive settling of wintering bats (zones Ⅲ, Ⅳand Ⅴ). The zone Ⅱ-tourist zone with periodic air flows and often visited by humans is the least used by hibernating bats.
基金National Science and Technology Support Program of China(No.2009BAG15B01)National Science Foundation(No.51008233)
文摘Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbulent flow field. And the yaw angle of wind changes from transverse to longitudinal. Through full aero-elastic model testing, wind-induced vibration is checked, which includes vortex resonance, buffeting and galloping. Vortex resonance is observed and further studies are carried out by changing damping ratio. Based on wind tunnel testing results, wind-resistance of middle pylon is evaluated and some suggestions are given for middle pylon's construction.
文摘The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far above the bottom. Hydraulic mixing is essential in a solid-liquid two-phase flow process, in which large solid particles can be found at the initial stage and turn to being high-concentration viscous liquid (non-Newtonian fluid). A 0.75 m3 digester was taken as a case study with CFD (computational fluid dynamics) software. The basic pattern was simulated by using water as the medium and the pattern of pseudo plastic fluid state was simulated by the Euler-Euler Model, then the effect of optimized design with bottom inflow and high dispersed outlets could be verified. Viewed from the mixing effects, the velocity of 0.6 m/s is better than l m/s for water medium, while 1 m/s better than 0.6 m/s for pseudo plastic fluid medium.
文摘Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them (instead of using the more common propeller-type blades). In the present study, three models (cylinder with no fins, cylinder with straight fins and cylinder with spiral fins) were installed, and fluid force measurements were performed by a strain gauge force balance. A PIV (particle image velocimetry) system was used to better understand the flow fields around the cylinder. Considering the results of the experiment, it was confirmed that, the aerodynamic performance of the rotating cylinder can be improved by the fin. However, the straight fin makes the flow close to the cylinder surface ineffective. The rotary cylinder with the spiral fins was able to generate the greatest lift among three models, because the spiral fin effectively influences the vicinity of the cylinder surface.