An experimental study of thermal de-NOx using NH3 as reductant in 02/C02 atmosphere with the effect of S02 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win- d...An experimental study of thermal de-NOx using NH3 as reductant in 02/C02 atmosphere with the effect of S02 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win- dow is 841-1184 ℃, and the optimum reaction temperature is about 900 ℃ with a de-NOx efficiency of 95.4%. A certain amount of S02 has an inhibiting effect on NO reduction. The effect of additives, including Na2C03, C2H5OH and FeCI3, on NO reduction by NH3 is also explored. The addition of Na2CO3 and FeCI3 is useful to widen the tem- perature window and shift the reaction to lower temperature for the efficiency is increased from 30.5% to 74.0% and 67.4% respectively at 800 ℃. Qualitatively, the modeling results using a detailed kinetic modeling mecha- nism represent well most of the process features. The effect of Na2CO3, C2H5OH and FeCI3 addition can be reproduced well by the Na2C03, C2H5OH and Fe(CO)5 sub-mechanism respectively. The reaction mechanism analysis shows that the effects of these additives on NO reduction are achieved mainly by promoting the produc- tion of OH radicals at lower temperature.展开更多
Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the au...Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.展开更多
基金Supported by the National Natural Science Foundation of China(51206096)
文摘An experimental study of thermal de-NOx using NH3 as reductant in 02/C02 atmosphere with the effect of S02 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win- dow is 841-1184 ℃, and the optimum reaction temperature is about 900 ℃ with a de-NOx efficiency of 95.4%. A certain amount of S02 has an inhibiting effect on NO reduction. The effect of additives, including Na2C03, C2H5OH and FeCI3, on NO reduction by NH3 is also explored. The addition of Na2CO3 and FeCI3 is useful to widen the tem- perature window and shift the reaction to lower temperature for the efficiency is increased from 30.5% to 74.0% and 67.4% respectively at 800 ℃. Qualitatively, the modeling results using a detailed kinetic modeling mecha- nism represent well most of the process features. The effect of Na2CO3, C2H5OH and FeCI3 addition can be reproduced well by the Na2C03, C2H5OH and Fe(CO)5 sub-mechanism respectively. The reaction mechanism analysis shows that the effects of these additives on NO reduction are achieved mainly by promoting the produc- tion of OH radicals at lower temperature.
基金Project(gjd-09041)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.