期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
石墨烯增强复合材料悬臂板的气动颤振分析及振动抑制研究 被引量:1
1
作者 韩若凡 陈杰 张伟 《动力学与控制学报》 2022年第1期42-50,共9页
本文针对石墨烯增强复合材料悬臂板的气动颤振特性及振动控制问题开展了研究.利用Halpin-Tsai及混合率计算了石墨烯增强复合材料的等效材料参数,运用经典板理论、第二类压电方程和Hamilton原理得到了结构的运动控制方程.通过Rayleigh-R... 本文针对石墨烯增强复合材料悬臂板的气动颤振特性及振动控制问题开展了研究.利用Halpin-Tsai及混合率计算了石墨烯增强复合材料的等效材料参数,运用经典板理论、第二类压电方程和Hamilton原理得到了结构的运动控制方程.通过Rayleigh-Ritz法计算了石墨烯增强复合材料悬臂板的固有频率,探究了XGPLs,U-GPLs和O-GPLs三种不同石墨烯分布类型以及不同石墨烯增强体质量分数对结构固有频率及无量纲临界颤振气动压力的影响.同时,通过加速度反馈控制和位移反馈控制对结构气动颤振的控制效果进行了分析.数值模拟的结果表明:随着石墨烯增强体质量分数的增加,石墨烯增强复合材料板的固有频率和无量纲颤振气动压力增加,X-GPLs分布对结构刚度和气动稳定性的提升效果优于U-GPLs分布和O-GPLs分布.加速度反馈控制和位移反馈控制都可以有效地抑制结构的气动颤振,提高结构的气动稳定性. 展开更多
关键词 气动颤振 石墨烯 压电材料 反馈控制
下载PDF
基于主动控制策略的机翼颤振特性模拟 被引量:3
2
作者 刘楚源 刘泽森 宋汉文 《力学学报》 EI CSCD 北大核心 2019年第2期333-340,共8页
航空航天飞行器舵翼类结构的气动颤振是一种灾难性的动力学行为.在基于偶极子理论的气动弹性动力学模型中,气动载荷可表达为基于结构动力学响应的一种状态反馈的闭环控制力,控制律取决于翼型的几何参数、材料参数、结构动力学特性以及... 航空航天飞行器舵翼类结构的气动颤振是一种灾难性的动力学行为.在基于偶极子理论的气动弹性动力学模型中,气动载荷可表达为基于结构动力学响应的一种状态反馈的闭环控制力,控制律取决于翼型的几何参数、材料参数、结构动力学特性以及来流速度等多种条件,通常需通过实际飞行或风洞实验进行辨识与检验.在实验室条件下,以系统动力学响应的模态特征等效为前提,提出了一种基于人工主动控制的方式进行气动载荷下舵翼类结构自激颤振的特征值跟踪策略.建立并讨论了等效系统的非自伴随动力学微分方程及其特征方程的求解过程,并与通用软件的计算结果进行了对比,二者具有较好的一致性.通过优化搜索分别获得了位移和速度的最优反馈点、最优作动点位置及最优反馈增益系数,经对比计算拟合得到风速–位移增益曲线和风速–速度增益曲线,从而实现了由单点反馈、单点作动的集中力的闭环控制等效系统的真实气动力分布控制.仿真算例表明,由此预示的实验过程无需辨识和重构非定常气动力的时域波形,无需其他干预即可实现地面模拟实验,主动控制的效果满足预期,初步实现了自激颤振的特征值跟踪,为进一步推动主动控制模拟实验及颤振参数辨识提供了基础. 展开更多
关键词 气动颤振 模态分析 主动控制 特征值跟踪 最优化方法
下载PDF
桥梁节段模型气动导数的神经网络识别法 被引量:5
3
作者 王修勇 陈政清 黄方林 《湘潭矿业学院学报》 2001年第3期74-77,共4页
应用单层神经网络技术和风洞试验得到的桥梁节段模型加速度响应 ,提出了直接识别节段模型运动方程中的物理参数矩阵 ,进而一次识别全部 8个气动导数的方法 .该方法物理概念清晰 ,计算简单 ,便于实际应用 .仿真计算表明 ,方法计算结果稳... 应用单层神经网络技术和风洞试验得到的桥梁节段模型加速度响应 ,提出了直接识别节段模型运动方程中的物理参数矩阵 ,进而一次识别全部 8个气动导数的方法 .该方法物理概念清晰 ,计算简单 ,便于实际应用 .仿真计算表明 ,方法计算结果稳定有效 ,即使在存在 5 % 10 %随机噪声污染情况下也能获得较好的精度 .最后应用该法识别了洞庭湖大桥节段模型的气动导数 .图 2 ,表 1,参 展开更多
关键词 桥梁 节段模型 颤振气动导数识别 神经网络 抗风
下载PDF
Numerical study on the correlation of transonic single-degree-of-freedom flutter and buffet 被引量:4
4
作者 GAO ChuanQiang ZHANG WeiWei +2 位作者 LIU YiLang YE ZhengYin JIANG YueWen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第8期67-78,共12页
Transonic single-degree-of-freedom(SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are inve... Transonic single-degree-of-freedom(SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are investigated using Unsteady Reynolds-Averaged Navier-Stokes(URANS) equations. The airfoil is free to vibrate in SDOF of pitching. It is found that, the coupling system may be unstable and SDOF self-excited pitching oscillations occur in pre-buffet flow condition, where the free-stream angle of attack(AOA) is lower than the buffet onset of a stationary airfoil. In the theory of classical aeroelasticity, this unstable phenomenon is defined as flutter. However, this transonic SDOF flutter is closely related to transonic buffet(unstable aerodynamic models) due to the following reasons. Firstly, the SDOF flutter occurs only when the free-stream AOA of the spring suspended airfoil is slightly lower than that of buffet onset, and the ratio of the structural characteristic frequency to the buffet frequency is within a limited range. Secondly, the response characteristics show a high correlation between the SDOF flutter and buffet. A similar "lock-in" phenomenon exists, when the coupling frequency follows the structural characteristic frequency. Finally, there is no sudden change of the response characteristics in the vicinity of buffet onset, that is, the curve of response amplitude with the free-stream AOA is nearly smooth. Therefore, transonic SDOF flutter is often interwoven with transonic buffet and shows some complex characteristics of response, which is different from the traditional flutter. 展开更多
关键词 transonic flow single-degree-of-freedom flutter transonic buffet buffet onset correlation
原文传递
Active control of supersonic/hypersonic aeroelastic flutter for a two-dimensional airfoil with flap 被引量:4
5
作者 ZHAO Na 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第8期1943-1953,共11页
The flutter, post-flutter and active control of a two-dimensional airfoil with control surface operating in supersonic/hypersonic flight speed regions are investigated in this paper. A three-degree-of-freedom dynamic ... The flutter, post-flutter and active control of a two-dimensional airfoil with control surface operating in supersonic/hypersonic flight speed regions are investigated in this paper. A three-degree-of-freedom dynamic model is established, in which both the cubic nonlinear structural stiffness and the nonlinear aerodynamic load are accounted for. The third order Piston Theory is employed to derive the aerodynamic loads in the supersonic/hypersonic airflow. Nonlinear flutter happens with a phenomenon of limit cycle oscillations (LCOs) when the flight speed is less than or greater than linear critical speed. The LQR approach is employed to design a control law to increase both the linear and nonlinear critical speeds of aerodynamic flutter, and then a combined control law is proposed in order to reduce the amplitude of LCOs by adding a cubic nonlinear feedback control. The dynamic responses of the controlled system are given and used to compare with those of the uncontrolled system. Results of simulation show that the active flutter control method proposed here is effective. 展开更多
关键词 flutter/post flutter active control supersonic/hypersonic flow 2-D airfoil NONLINEARITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部