Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita form...Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita formula, a set of equations are derived, which describe the impact of perturbations of central pressure, position of tropical cyclones, direction and velocity of movement of tropical cyclones on the wind field. It is proved that the second order approximation of the kinetic energy of tropical cyclones can be described by the equations under linear approximation. Typhoon Wipha (2007) is selected to verify the above interpretation method, and the results show that the interpretation method of the wind field could give very good results before the landfall of tropical cyclones, while making no apparent improvement after the landfall. The dynamical interpretation method in this paper is applicable to improving the forecasts of the wind field of tropical cyclones close to the coast.展开更多
To investigate the impacts of the quasi-biennial oscillation (QBO) on high-latitude circulation and the Arctic vortex, stratospheric zonal wind at 55-65°N is analyzed. The seasonal cycle, solar cycle, and linea...To investigate the impacts of the quasi-biennial oscillation (QBO) on high-latitude circulation and the Arctic vortex, stratospheric zonal wind at 55-65°N is analyzed. The seasonal cycle, solar cycle, and linear trend in the zonal wind at these latitudes are analyzed and removed, and the QBO signal is retrieved from the monthly zonal wind for the period 1979-2014. The zonal wind has a strong decreasing trend in winter, with a maximum decrease (less than -0.35 m s-1 yr-1) occurring within 70-100°E. The zonal wind has an in-phase response of 1.6 m s-1 to the solar cycle, with a maximum within 100-140°E. A clear QBO signal is detected in the zonal wind during the period 1979-2014, with an amplitude of 2.5 m s-1 and a period of 30 months. The latitudinal distribution of the QBO signal is inhomogeneous, with a maximum within 120-180°E and a minimum within 25-45°E.展开更多
Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them (instead of using the more common propeller-type blades). In the present study, three models...Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them (instead of using the more common propeller-type blades). In the present study, three models (cylinder with no fins, cylinder with straight fins and cylinder with spiral fins) were installed, and fluid force measurements were performed by a strain gauge force balance. A PIV (particle image velocimetry) system was used to better understand the flow fields around the cylinder. Considering the results of the experiment, it was confirmed that, the aerodynamic performance of the rotating cylinder can be improved by the fin. However, the straight fin makes the flow close to the cylinder surface ineffective. The rotary cylinder with the spiral fins was able to generate the greatest lift among three models, because the spiral fin effectively influences the vicinity of the cylinder surface.展开更多
基金National Basic Research Program of China (973 Program) (2009CB421505)Major Projects for Science and Technology Development of Zhejiang Province (2007C13G1610002)Natural Science Foundation Project of Zhejiang Province(Y505286)
文摘Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita formula, a set of equations are derived, which describe the impact of perturbations of central pressure, position of tropical cyclones, direction and velocity of movement of tropical cyclones on the wind field. It is proved that the second order approximation of the kinetic energy of tropical cyclones can be described by the equations under linear approximation. Typhoon Wipha (2007) is selected to verify the above interpretation method, and the results show that the interpretation method of the wind field could give very good results before the landfall of tropical cyclones, while making no apparent improvement after the landfall. The dynamical interpretation method in this paper is applicable to improving the forecasts of the wind field of tropical cyclones close to the coast.
基金supported by the Special Fund for Meteorological Research in the Public Interest[grant number GYHY201206041]the projects entitled‘Comprehensive Evaluation of Polar Areas in Global and Regional Climate Changes’[grant number CHINARE2015–2019]‘Polar Environment Comprehensive Investigation and Assessment’[grant number CHINARE2015–2019]
文摘To investigate the impacts of the quasi-biennial oscillation (QBO) on high-latitude circulation and the Arctic vortex, stratospheric zonal wind at 55-65°N is analyzed. The seasonal cycle, solar cycle, and linear trend in the zonal wind at these latitudes are analyzed and removed, and the QBO signal is retrieved from the monthly zonal wind for the period 1979-2014. The zonal wind has a strong decreasing trend in winter, with a maximum decrease (less than -0.35 m s-1 yr-1) occurring within 70-100°E. The zonal wind has an in-phase response of 1.6 m s-1 to the solar cycle, with a maximum within 100-140°E. A clear QBO signal is detected in the zonal wind during the period 1979-2014, with an amplitude of 2.5 m s-1 and a period of 30 months. The latitudinal distribution of the QBO signal is inhomogeneous, with a maximum within 120-180°E and a minimum within 25-45°E.
文摘Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them (instead of using the more common propeller-type blades). In the present study, three models (cylinder with no fins, cylinder with straight fins and cylinder with spiral fins) were installed, and fluid force measurements were performed by a strain gauge force balance. A PIV (particle image velocimetry) system was used to better understand the flow fields around the cylinder. Considering the results of the experiment, it was confirmed that, the aerodynamic performance of the rotating cylinder can be improved by the fin. However, the straight fin makes the flow close to the cylinder surface ineffective. The rotary cylinder with the spiral fins was able to generate the greatest lift among three models, because the spiral fin effectively influences the vicinity of the cylinder surface.