It is desired to increase the rotational speed of the core engine of the turbofan so as to get the best efficiency for the next leap of engine technology. The conventional mechanism in which the front fan is directly ...It is desired to increase the rotational speed of the core engine of the turbofan so as to get the best efficiency for the next leap of engine technology. The conventional mechanism in which the front fan is directly connected to the output shaft of a core engine, have a limit of increasing the spool speed, because the fan diameter is very large. The authors have proposed a new driving system in which the front fan is driven through the aerodynamic torque converter. The front fan can work at the best performance at slower speed while the core engine runs more efficiently at higher speed. Continuously, this paper discusses the response of the front fan in the unsteady operation of the core engine, accompanying with the internal flow. The system has the acceptable responsibility in the unsteady operation which is very important for the aircrafts.展开更多
This paper investigates the relations between the fluctuating pressure and velocity of the source by means of nu- merical method and sound pressure in the far field obtained with an noise experiment for a novel cross ...This paper investigates the relations between the fluctuating pressure and velocity of the source by means of nu- merical method and sound pressure in the far field obtained with an noise experiment for a novel cross flow fan. The frequency characteristics of the fluctuating pressure and velocity in a cross flow fan are analyzed by means of spectral analysis and wavelet transform. The fluctuating pressures obtained by large eddy simulation on the casing wall are compared with that of experiments and show good agreement. From the spectral analysis of sound source, it is found that the pressure fluctuating peak is correspond with the sound pressure in the far field.展开更多
文摘It is desired to increase the rotational speed of the core engine of the turbofan so as to get the best efficiency for the next leap of engine technology. The conventional mechanism in which the front fan is directly connected to the output shaft of a core engine, have a limit of increasing the spool speed, because the fan diameter is very large. The authors have proposed a new driving system in which the front fan is driven through the aerodynamic torque converter. The front fan can work at the best performance at slower speed while the core engine runs more efficiently at higher speed. Continuously, this paper discusses the response of the front fan in the unsteady operation of the core engine, accompanying with the internal flow. The system has the acceptable responsibility in the unsteady operation which is very important for the aircrafts.
基金a Grant-in-Aid for Scientific Research through grant number 50676035 from National Natural Science Foundation of China
文摘This paper investigates the relations between the fluctuating pressure and velocity of the source by means of nu- merical method and sound pressure in the far field obtained with an noise experiment for a novel cross flow fan. The frequency characteristics of the fluctuating pressure and velocity in a cross flow fan are analyzed by means of spectral analysis and wavelet transform. The fluctuating pressures obtained by large eddy simulation on the casing wall are compared with that of experiments and show good agreement. From the spectral analysis of sound source, it is found that the pressure fluctuating peak is correspond with the sound pressure in the far field.