期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
等离子熔积高温合金件表面激光气化光整研究 被引量:2
1
作者 张海鸥 汪亮 +2 位作者 王桂兰 曹彪 钱应平 《中国机械工程》 EI CAS CSCD 北大核心 2005年第18期1674-1677,共4页
针对高温合金零件机械加工周期长、刀具损耗大的难点,开发采用高功率调Q激光对高温合金零件进行表面光整的方法。通过系统研究分析激光表面去除加工的激光功率、调Q频率、扫描速度、保护气体气压等主要工艺参数对高温合金零件表面光整... 针对高温合金零件机械加工周期长、刀具损耗大的难点,开发采用高功率调Q激光对高温合金零件进行表面光整的方法。通过系统研究分析激光表面去除加工的激光功率、调Q频率、扫描速度、保护气体气压等主要工艺参数对高温合金零件表面光整加工质量的影响,获得适于高温合金件的表面光整条件,采用此条件光整加工得到表面质量好的高温合金零件,为等离子熔积成形快速直接制造高温合金零件提供技术基础。 展开更多
关键词 等离子熔积制造 材料激光加工 表面光整 调Q激光 气化去除 高温合金
下载PDF
Research and development on mechanism of removal of indoor volatile organic compounds by plants
2
作者 LI Fangwei CUI Long +2 位作者 CHENG Yan XUE Yonggang HUANG Yu 《地球环境学报》 CSCD 2024年第4期583-595,共13页
Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture ha... Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research. 展开更多
关键词 PLANTS VOCS removal mechanism indoor air purification MICROORGANISM
下载PDF
Smelting chlorination method applied to removal of copper from copper slags 被引量:6
3
作者 李磊 王华 胡建杭 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期59-65,共7页
In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasin... In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However,the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34% is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, Ca Cl2 addition amount of 0.1(mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible. 展开更多
关键词 copper slags smelting chlorination copper removal volatilization waste utilization
下载PDF
An air cleaner for road tunnels
4
作者 雷玉勇 《Journal of Chongqing University》 CAS 2003年第1期13-16,共4页
an air cleaner employing pulse induced plasma chemical process to remove dust and carbon monoxide (CO) in road tunnels is presented, which is composed of mainly a precipitator, a reactor, a flow control system, a powe... an air cleaner employing pulse induced plasma chemical process to remove dust and carbon monoxide (CO) in road tunnels is presented, which is composed of mainly a precipitator, a reactor, a flow control system, a power supply and a measurement system. Its performances are studied in simulated air conditions. It is found that the rate of dust removal is dependent on the voltage of the pulse power, the distance between the two dust collecting plates of the electrostatic precipitator, the effective length of the precipitator and the air flow rate in the precipitator, and that of CO removal is affected by the voltage and frequency of the super pulse power, the air flow rate in the reactor and the relative humidity of air. Applying such an cleaner of a proper design to the treatment of polluted air at a flow rate of 7 m/s can achieve the rate of dust removal up to 93 % and that of CO removal up to 72.6 %, which efficiently controls the concentrations of CO and dust under allowable limits. It is implied that the proposed air cleaner is a potential solution to air control in road tunnels, and is prominent for its performances and saving the huge cost of longitudinal ventilation tunnel or vertical vent and ventilation facilities. 展开更多
关键词 air pollution air pollution control dust removal road tunnel CO removal
下载PDF
Multi-pollutants simultaneous removal from flue gas
5
作者 Gao Xiang Wu Zuliang Luo Zhongyang Ni Mingjiang Cen Kefa 《Engineering Sciences》 EI 2010年第1期27-31,共5页
The multi-stages humidifier semi-dry flue gas cleaning technology, the CRS plasma flue gas cleaning technology and oxidative additive flue gas cleaning technology were investigated for multi-pollutants removal. The se... The multi-stages humidifier semi-dry flue gas cleaning technology, the CRS plasma flue gas cleaning technology and oxidative additive flue gas cleaning technology were investigated for multi-pollutants removal. The semi-dry flue gas cleaning technology using multi-stages humidifier and additive can improve oxidation and absorption, and it can achieve high multi-pollutants removal efficiency. The CRS discharge can produce many OH radicals that promote NO oxidation. Combining NaOH absorption can achieve high deSO2 and deNO, efficiencies. It is fit for the reconstruction of primary wet flue gas desulfurization (WFGD). In addition, using NaClO2 as additive in the absorbent of WFGD can obtain very high removal efficiency of SO2 and NOx. 展开更多
关键词 simultaneous removal SEMI-DRY PLASMA ADDITIVE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部