To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasificat...To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasification and two-stage gasification were studied contrastively based on field trial at the Huating UCG project. The results indicate that the average low heat value of gas from air experiment is the lowest (4.1 MJ/Nm3) and the water gas from two-stage gasification experiment is the highest (10.72 MJ/Nm3). The gas productivity of air gasification is the highest and the pure oxygen steam gasification is the lowest. The gasification efficiency of air gasification, air-steam gasification, oxygen-enriched steam gasification, pure oxygen steam gasification and two-stage gasification is listed in ascending order, ranging from 69.88% to 84.81%. Described a contract study on results of a field test using steam and various levels of oxygen enrichment of 21%, 32%, 42% and 100%. The results show that, with the increasing of O2 content in gasifying agents, the gas caloricity rises, and the optimal O2 concentration range to increase the gas caloricity is 30%-40%. Meanwhile, the consumption of O2 and steam increase, and the air consumption and steam decomposition efficiency fall.展开更多
Isothermal and non-isothermal gasification kinetics of coal char were investigated by using thermogravimetric analysis(TGA) in CO2 atmosphere, and the experimental data were interpreted with the aids of random pore mo...Isothermal and non-isothermal gasification kinetics of coal char were investigated by using thermogravimetric analysis(TGA) in CO2 atmosphere, and the experimental data were interpreted with the aids of random pore model(RPM), unreacted shrinking core model(URCM) and volume model(VM). With the increase of heating rate, gasification curve moves into high temperature zone and peak rate of gasification increases; with the increase of gasification temperature, gasification rate increases and the total time of gasification is shortened. The increase of both heating rate and gasification temperature could improve gasification process of coal char. Kinetics analysis indicates that experimental data agree better with the RPM than with the other two models. The apparent activation energy of non-isothermal and isothermal gasification of coal char using RPM is 193.9 k J/mol and 212.6 k J/mol respectively, which are in accordance with reported data. Gasification process of coal char under different heating rates and different temperatures are predicted by the RPM derived in this study, and it is found that the RPM predicts the reaction process satisfactorily.展开更多
Gas-liquid contactors equipped with polytetrafluoroethylene (PTFE) or polypropylene (PP) hydrophobic membranes were applied for removal of sulfur dioxide from refinery gas. Pure water, NaOH solution and MDEA were ...Gas-liquid contactors equipped with polytetrafluoroethylene (PTFE) or polypropylene (PP) hydrophobic membranes were applied for removal of sulfur dioxide from refinery gas. Pure water, NaOH solution and MDEA were adopted as the absorbents. The performance of the two kinds of membranes for separation of SO2 was evaluated in terms of the concentration of absorbent solution, the concentration of SO2, and the feed flow rate. The efficiency for removal of SO2 increased with an increasing absorbent concentration. Upon increasing the concentration of SO2 and the feed flow rate, the desulfurization efficiency was decreased.展开更多
This study was to examine the influence of reactions of char–O2and char–steam on the char reactivity evolution.A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown co...This study was to examine the influence of reactions of char–O2and char–steam on the char reactivity evolution.A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown coal at800 °C. The chars prepared from the gasification experiments were then collected and subjected to reactivity characterisation(ex-situ reactivity) using TGA(thermogravimetric analyser) in air. The results indicate that the char reactivity from TGA was generally high when the char experienced intensive gasification reactions in 0.3%O2in the fixed-bed reactor. The addition of steam into the gasification not only enhanced the char conversion significantly but also reduced the char reactivity dramatically. The curve shapes of the char reactivity with involvement of steam were very different from that with O2 gasification, implying the importance of gasifying agents to char properties.展开更多
We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly s...We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly significant effects on the oxygen consumption rate (Ro) and ammonia excretion rate (RN) (P〈0.01). The interactive effects between salinity and body mass on Ro and RN were insignificant (P〉0.05) and highly significant (P〈0.01), respectively. Ro and RN of B. pectinirostris decreased significantly as the individual body mass increased. The relationship between Ro and body mass was represented by Ro=aWb (R^2=0.956, P〈0.01). The relationship between RN and the body mass ofB. pectinirostris was represented by RN-cW^at (R^2=0.966, P〈0.01). The Ro/RN (O:N) ratios increased significantly as the salinity increased from 12 to 27, but decreased as salinity increased from 27 to 32. The atomic O:N ratios were significantly higher at 27 than at other salinity levels. The average O:N ratio was 25.25. Lipid and carbohydrate were the primary energy sources and protein was the secondary energy significantly higher at 27 than at other salinity levels B, pectinirostris is 27. source within the salinity range 12 32. Ro andRN were Our results suggest that the optimum salinity level for B. pectinirostris is 27.展开更多
A laboratory scale downdraft biomass gasifier was designed to deliver a mechanical power of 4 kW and thermal power of about 15 kW. The gasifier was manufactured as a single piece having a water seal and cover. The gas...A laboratory scale downdraft biomass gasifier was designed to deliver a mechanical power of 4 kW and thermal power of about 15 kW. The gasifier was manufactured as a single piece having a water seal and cover. The gasifier was tested in natural downdraft and forced downdraft mode. Ignition of the fuel beneath the grate, during natural downdraft mode, using wood shavings as fuel, produced gas which burned with a blue flame for 15 minutes. Ignition at the throat, using either palm kernel shells or wood shavings, during the natural downdraft mode, the gasifier did not produce syngas. During the forced downdraft mode, fuel was ignited at the throat. Gasification was successful with the palm kernel shells, during forced downdraft, which produced gas which burned steadily with luminous flame for 15 minutes per kilogram of biomass fed. However, wood shavings experienced some bridging problems during the forced downdraft mode of operation. The fuel conversion rate of the gasifier, when using palm kernel shells as fuel in forced downdraft mode, was 4 kg/h. Forced downdraft mode of operation yielded better results and is the preferred operation of the gasifier.展开更多
An experimental study of thermal de-NOx using NH3 as reductant in 02/C02 atmosphere with the effect of S02 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win- d...An experimental study of thermal de-NOx using NH3 as reductant in 02/C02 atmosphere with the effect of S02 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win- dow is 841-1184 ℃, and the optimum reaction temperature is about 900 ℃ with a de-NOx efficiency of 95.4%. A certain amount of S02 has an inhibiting effect on NO reduction. The effect of additives, including Na2C03, C2H5OH and FeCI3, on NO reduction by NH3 is also explored. The addition of Na2CO3 and FeCI3 is useful to widen the tem- perature window and shift the reaction to lower temperature for the efficiency is increased from 30.5% to 74.0% and 67.4% respectively at 800 ℃. Qualitatively, the modeling results using a detailed kinetic modeling mecha- nism represent well most of the process features. The effect of Na2CO3, C2H5OH and FeCI3 addition can be reproduced well by the Na2C03, C2H5OH and Fe(CO)5 sub-mechanism respectively. The reaction mechanism analysis shows that the effects of these additives on NO reduction are achieved mainly by promoting the produc- tion of OH radicals at lower temperature.展开更多
The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forc...The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.展开更多
In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three t...In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three types of monoliths were used for experiments and the temperature of preheated air was respectively 50℃ , 100℃ and 200℃ . The results showed that preheated air made radial temperature in the catalytic monolith uniform which helped to avoid local hot spots so as to decrease NOx emission. The experiment also proved that the shorter monolith showed much better catalytic combustion performance than longer one and the temperature at the exit of the shorter monolith was relatively lower. On the contrary, the temperature was higher in the longer monolith and the lethal NOx emission was slightly increased.展开更多
The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory d...The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory determination were initialized for the value which was defined as "K". The ratio of each index gas and value of "K", and the ratio of combination index gases and value of "K", were analyzed simultaneously. The research results show that for this coal mine, if there is carbon monoxide in the gas sample, the phenomenon of oxidation and temperature rising for coal exists in this mine; if there is C_2H_4 in the gas sample, the temperature of coal perhaps exceeds 130 °C. If the coal temperature is between 35 °C and 130 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(CO)/K mainly; if the temperature of coal is between 130 °C and 300 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(C_2H_6)/Φ(C_2H_2) and Φ(C_2H_6)/K. The research results provide experimental basis for the prediction of coal spontaneous combustion in Anyuan coal mine, and have better guidance on safe production of this coal mine.展开更多
The desulfurization performance of the UDS solvents was investigated at an industrial side-stream plant and was compared with that of MDEA solvent.A mass transfer performance model was employed for explaining the COS ...The desulfurization performance of the UDS solvents was investigated at an industrial side-stream plant and was compared with that of MDEA solvent.A mass transfer performance model was employed for explaining the COS absorption into different solvents.Meanwhile,the regeneration performance of the UDS solvents was evaluated in side-stream tests.Results indicate that under the conditions covering an absorption temperature of 40℃,a pressure of 8.0 MPa,and a gas to liquid volume ratio(V/L)of around 230,the H2S content in purified gas can be reduced to 4.2 mg/m3 and 0 by using solvents UDS-II and UDS-III,respectively.Moreover,the total sulfur content in both purified gases is less than 80 mg/m3.As a result,the UDS-III solvent shows by 30 percentage points higher in COS removal efficiency than MDEA.In addition,the total volume mass transfer coefficient of UDS solvent is found to be twice higher than that of MDEA.Furthermore,the UDS solvents exhibit satisfactory thermal stability and regeneration performance.展开更多
Experimental evidences of occurrence of gaseous diatomic sulfur produced in the low temperature catalytic decomposition of hydrogen sulfide 2 H2S ←→ 2 H2 + S2 (g) are summarized. The S2 molecule is suggested to b...Experimental evidences of occurrence of gaseous diatomic sulfur produced in the low temperature catalytic decomposition of hydrogen sulfide 2 H2S ←→ 2 H2 + S2 (g) are summarized. The S2 molecule is suggested to be in the ground triplet state. Analysis of literature data allows concluding that the S2 metastable singlet state is realized in the thermal dissociation of hydrogen sulfide and solid sulfur. Arguments in favor of the hypothesis are been discussed.展开更多
The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountai...The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.展开更多
With the rapid development of modem industry and increase of consumption of the coal, petroleum and natural gas etc., emission of nitrogen oxide (NOx) from flue gas has air environment quality worsen day by day. Thi...With the rapid development of modem industry and increase of consumption of the coal, petroleum and natural gas etc., emission of nitrogen oxide (NOx) from flue gas has air environment quality worsen day by day. This research work is experimental study on removal low concentration NOx of flue gas by using solid absorbents. The experiment result shown that denification rate by modified activated carbon is higher than that of modified zeolite and rectorite. Average denitrification rate is 65.47% and maximum denitrification rate is 95.82% for activated carbon; average denitrification rate is respectively as 43.29% and 36.18%, maximum denitrification rate is respectively as 87.51% and 79.47% for modified zeolite and rectorite. Experiment results indicated that NO adsorption process of activated carbon can be described by Freudlich adsorption mode, K=0.143 and n=2.842 and Freudlich adsorption isotherm equation is: q = 0.143MO^0.3519.展开更多
文摘To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasification and two-stage gasification were studied contrastively based on field trial at the Huating UCG project. The results indicate that the average low heat value of gas from air experiment is the lowest (4.1 MJ/Nm3) and the water gas from two-stage gasification experiment is the highest (10.72 MJ/Nm3). The gas productivity of air gasification is the highest and the pure oxygen steam gasification is the lowest. The gasification efficiency of air gasification, air-steam gasification, oxygen-enriched steam gasification, pure oxygen steam gasification and two-stage gasification is listed in ascending order, ranging from 69.88% to 84.81%. Described a contract study on results of a field test using steam and various levels of oxygen enrichment of 21%, 32%, 42% and 100%. The results show that, with the increasing of O2 content in gasifying agents, the gas caloricity rises, and the optimal O2 concentration range to increase the gas caloricity is 30%-40%. Meanwhile, the consumption of O2 and steam increase, and the air consumption and steam decomposition efficiency fall.
基金supported by the National Science Foundation of China & Baosteel under Grant (No. 51134008)the National Key Technology R&D Program in the 12th Five year Plan of China (No. 2011BAC01B02)
文摘Isothermal and non-isothermal gasification kinetics of coal char were investigated by using thermogravimetric analysis(TGA) in CO2 atmosphere, and the experimental data were interpreted with the aids of random pore model(RPM), unreacted shrinking core model(URCM) and volume model(VM). With the increase of heating rate, gasification curve moves into high temperature zone and peak rate of gasification increases; with the increase of gasification temperature, gasification rate increases and the total time of gasification is shortened. The increase of both heating rate and gasification temperature could improve gasification process of coal char. Kinetics analysis indicates that experimental data agree better with the RPM than with the other two models. The apparent activation energy of non-isothermal and isothermal gasification of coal char using RPM is 193.9 k J/mol and 212.6 k J/mol respectively, which are in accordance with reported data. Gasification process of coal char under different heating rates and different temperatures are predicted by the RPM derived in this study, and it is found that the RPM predicts the reaction process satisfactorily.
基金supported by the Suzhou Science and Technology Program.
文摘Gas-liquid contactors equipped with polytetrafluoroethylene (PTFE) or polypropylene (PP) hydrophobic membranes were applied for removal of sulfur dioxide from refinery gas. Pure water, NaOH solution and MDEA were adopted as the absorbents. The performance of the two kinds of membranes for separation of SO2 was evaluated in terms of the concentration of absorbent solution, the concentration of SO2, and the feed flow rate. The efficiency for removal of SO2 increased with an increasing absorbent concentration. Upon increasing the concentration of SO2 and the feed flow rate, the desulfurization efficiency was decreased.
基金Support by the Victorian State Government under its Energy Technology Innovation Strategy programme and the 12th Five-Year Plan of National Science and Technology of China(2012BAA04B02)
文摘This study was to examine the influence of reactions of char–O2and char–steam on the char reactivity evolution.A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown coal at800 °C. The chars prepared from the gasification experiments were then collected and subjected to reactivity characterisation(ex-situ reactivity) using TGA(thermogravimetric analyser) in air. The results indicate that the char reactivity from TGA was generally high when the char experienced intensive gasification reactions in 0.3%O2in the fixed-bed reactor. The addition of steam into the gasification not only enhanced the char conversion significantly but also reduced the char reactivity dramatically. The curve shapes of the char reactivity with involvement of steam were very different from that with O2 gasification, implying the importance of gasifying agents to char properties.
基金Supported by the Natural Science Foundation of Guangdong Province(No.8152408801000015)
文摘We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly significant effects on the oxygen consumption rate (Ro) and ammonia excretion rate (RN) (P〈0.01). The interactive effects between salinity and body mass on Ro and RN were insignificant (P〉0.05) and highly significant (P〈0.01), respectively. Ro and RN of B. pectinirostris decreased significantly as the individual body mass increased. The relationship between Ro and body mass was represented by Ro=aWb (R^2=0.956, P〈0.01). The relationship between RN and the body mass ofB. pectinirostris was represented by RN-cW^at (R^2=0.966, P〈0.01). The Ro/RN (O:N) ratios increased significantly as the salinity increased from 12 to 27, but decreased as salinity increased from 27 to 32. The atomic O:N ratios were significantly higher at 27 than at other salinity levels. The average O:N ratio was 25.25. Lipid and carbohydrate were the primary energy sources and protein was the secondary energy significantly higher at 27 than at other salinity levels B, pectinirostris is 27. source within the salinity range 12 32. Ro andRN were Our results suggest that the optimum salinity level for B. pectinirostris is 27.
文摘A laboratory scale downdraft biomass gasifier was designed to deliver a mechanical power of 4 kW and thermal power of about 15 kW. The gasifier was manufactured as a single piece having a water seal and cover. The gasifier was tested in natural downdraft and forced downdraft mode. Ignition of the fuel beneath the grate, during natural downdraft mode, using wood shavings as fuel, produced gas which burned with a blue flame for 15 minutes. Ignition at the throat, using either palm kernel shells or wood shavings, during the natural downdraft mode, the gasifier did not produce syngas. During the forced downdraft mode, fuel was ignited at the throat. Gasification was successful with the palm kernel shells, during forced downdraft, which produced gas which burned steadily with luminous flame for 15 minutes per kilogram of biomass fed. However, wood shavings experienced some bridging problems during the forced downdraft mode of operation. The fuel conversion rate of the gasifier, when using palm kernel shells as fuel in forced downdraft mode, was 4 kg/h. Forced downdraft mode of operation yielded better results and is the preferred operation of the gasifier.
基金Supported by the National Natural Science Foundation of China(51206096)
文摘An experimental study of thermal de-NOx using NH3 as reductant in 02/C02 atmosphere with the effect of S02 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win- dow is 841-1184 ℃, and the optimum reaction temperature is about 900 ℃ with a de-NOx efficiency of 95.4%. A certain amount of S02 has an inhibiting effect on NO reduction. The effect of additives, including Na2C03, C2H5OH and FeCI3, on NO reduction by NH3 is also explored. The addition of Na2CO3 and FeCI3 is useful to widen the tem- perature window and shift the reaction to lower temperature for the efficiency is increased from 30.5% to 74.0% and 67.4% respectively at 800 ℃. Qualitatively, the modeling results using a detailed kinetic modeling mecha- nism represent well most of the process features. The effect of Na2CO3, C2H5OH and FeCI3 addition can be reproduced well by the Na2C03, C2H5OH and Fe(CO)5 sub-mechanism respectively. The reaction mechanism analysis shows that the effects of these additives on NO reduction are achieved mainly by promoting the produc- tion of OH radicals at lower temperature.
基金Supported by the NationaJ Natural Science Foundation of China (21106176), President Fund of GUCAS (Y15101JY00), China Postdoctoral Science Foundation (2012T50155) and National Basic Research Program of China (2009CB219903).
文摘The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.
基金Supported by the Key Project of the National 973 Program of China (No.2005CB724201)the Natural Science Foundation ofBeijing (No.06C0002)the Beijing Education Commission Key Laboratory of Heat Transfer and Energy Conversion Fund(No.05005790200406).
文摘In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three types of monoliths were used for experiments and the temperature of preheated air was respectively 50℃ , 100℃ and 200℃ . The results showed that preheated air made radial temperature in the catalytic monolith uniform which helped to avoid local hot spots so as to decrease NOx emission. The experiment also proved that the shorter monolith showed much better catalytic combustion performance than longer one and the temperature at the exit of the shorter monolith was relatively lower. On the contrary, the temperature was higher in the longer monolith and the lethal NOx emission was slightly increased.
基金Projects(51274099,51474106)supported by the National Natural Science Foundation of China
文摘The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory determination were initialized for the value which was defined as "K". The ratio of each index gas and value of "K", and the ratio of combination index gases and value of "K", were analyzed simultaneously. The research results show that for this coal mine, if there is carbon monoxide in the gas sample, the phenomenon of oxidation and temperature rising for coal exists in this mine; if there is C_2H_4 in the gas sample, the temperature of coal perhaps exceeds 130 °C. If the coal temperature is between 35 °C and 130 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(CO)/K mainly; if the temperature of coal is between 130 °C and 300 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(C_2H_6)/Φ(C_2H_2) and Φ(C_2H_6)/K. The research results provide experimental basis for the prediction of coal spontaneous combustion in Anyuan coal mine, and have better guidance on safe production of this coal mine.
基金financial support from the National Key Science and Technology Project of China (2011ZX05017-005)the Fundamental Research Funds for the Central Universities (No.22A201514010)
文摘The desulfurization performance of the UDS solvents was investigated at an industrial side-stream plant and was compared with that of MDEA solvent.A mass transfer performance model was employed for explaining the COS absorption into different solvents.Meanwhile,the regeneration performance of the UDS solvents was evaluated in side-stream tests.Results indicate that under the conditions covering an absorption temperature of 40℃,a pressure of 8.0 MPa,and a gas to liquid volume ratio(V/L)of around 230,the H2S content in purified gas can be reduced to 4.2 mg/m3 and 0 by using solvents UDS-II and UDS-III,respectively.Moreover,the total sulfur content in both purified gases is less than 80 mg/m3.As a result,the UDS-III solvent shows by 30 percentage points higher in COS removal efficiency than MDEA.In addition,the total volume mass transfer coefficient of UDS solvent is found to be twice higher than that of MDEA.Furthermore,the UDS solvents exhibit satisfactory thermal stability and regeneration performance.
文摘Experimental evidences of occurrence of gaseous diatomic sulfur produced in the low temperature catalytic decomposition of hydrogen sulfide 2 H2S ←→ 2 H2 + S2 (g) are summarized. The S2 molecule is suggested to be in the ground triplet state. Analysis of literature data allows concluding that the S2 metastable singlet state is realized in the thermal dissociation of hydrogen sulfide and solid sulfur. Arguments in favor of the hypothesis are been discussed.
基金supported by the National Basic Research and Development Program of China (Grant No. 973:2011CB409902)the Key Project of National Natural Science Foundation of China (Grant No. 41172321)Southwest Jiaotong University Doctor Innovation Fund
文摘The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.
文摘With the rapid development of modem industry and increase of consumption of the coal, petroleum and natural gas etc., emission of nitrogen oxide (NOx) from flue gas has air environment quality worsen day by day. This research work is experimental study on removal low concentration NOx of flue gas by using solid absorbents. The experiment result shown that denification rate by modified activated carbon is higher than that of modified zeolite and rectorite. Average denitrification rate is 65.47% and maximum denitrification rate is 95.82% for activated carbon; average denitrification rate is respectively as 43.29% and 36.18%, maximum denitrification rate is respectively as 87.51% and 79.47% for modified zeolite and rectorite. Experiment results indicated that NO adsorption process of activated carbon can be described by Freudlich adsorption mode, K=0.143 and n=2.842 and Freudlich adsorption isotherm equation is: q = 0.143MO^0.3519.