Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is stron...Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.展开更多
A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature rang...A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.展开更多
According to IPCC (Intergovemmental Panel on Climate Change) Fourth Report, carbon dioxide emissions from the combustion of fossil fuels have been identified as the major contributor to global warming and climate ch...According to IPCC (Intergovemmental Panel on Climate Change) Fourth Report, carbon dioxide emissions from the combustion of fossil fuels have been identified as the major contributor to global warming and climate change. One of the new approaches for capturing carbon dioxide and subsequently lowering the emissions is based on gas hydrate crystallization. Gas hydrates have a large capacity for the storage of gases which also resemble an attractive method for gas filtration. The basis of the separation is the selective partition of the target component between the hydrate phase and the gaseous phase. It is expected that carbon dioxide is preferentially encaged into the hydrate crystal phase compared to the other components. In the present paper, after a comparison of gas hydrates with existing capture technologies, a novel apparatus for gas hydrate production is illustrated and results of a first set of experimental applications of the reactor for CO2 hydrate formation and separation are presented. In particular, the effects of two different promoters were investigated. Results show that the reactor allows a good level of temperature control, resulting in rapid hydrate formation and mild operating conditions. Results are a basis for setting up a procedure for CO2 separation and capture.展开更多
In the conceptual framework of adaptation policy assessment to climate change, adaptation measures can be categorized as two groups:facilitation and implementation. Facilitation measures refers to activities that enh...In the conceptual framework of adaptation policy assessment to climate change, adaptation measures can be categorized as two groups:facilitation and implementation. Facilitation measures refers to activities that enhance adaptive capacity, while implementation refers to activities that actually avoid adverse climate impacts on a system by reducing its exposure or sensitivity to climatic hazards, or by moderating relevant non-climatic factors. This paper aims to establish a matrix of implementation measures of adaptation to climate change, through four different ways how adaptation can influencc the relevant elements of climate change. reducing the exposure, reducing the sensitivity, alleviating the adverse impacts and reducing the negative non-climatic factors, and then further discuss the particular implementation measures of adaptation to climate change, through application studies on the selected sub-systems, intend to organize the disordered implementation measures in existent, and put forward some new measures under the guidance of this matrix, which could enrich and promote the system and content of implementation measures of adaptation.展开更多
Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-ge...Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.展开更多
Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid.In a φ48mm bubble column reactor,the commercial process of toluene liquid phase oxidation was conducted with Co(CH...Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid.In a φ48mm bubble column reactor,the commercial process of toluene liquid phase oxidation was conducted with Co(CH3COO)2.4H2O as catalyst.The Co2+ concentration [Co2+] was determined by extraction spectrophotometry and hereby the Co3+ concentration [Co3+] was obtained by mass balance.The results showed that [Co3+] reached the maximum at about 25-30min.[Co3+] increased with increasing Co catalyst amount at total Co concentration<150 mg.L-1 of toluene.The conversion of toluene,yield and selectivity of benzoic acid increased with the increasing [Co3+/Co2+] max.A high [Co3+] and a high [Co3+]/[Co2+] ratio are beneficial to the reaction.展开更多
The feasibility of using liquid nitrogen cold trap (LNCT) for the removal of water vapour and alkaline mist from the hydrogen gas stream which is generated from the catalytic and acidic decomposition of sodium boroh...The feasibility of using liquid nitrogen cold trap (LNCT) for the removal of water vapour and alkaline mist from the hydrogen gas stream which is generated from the catalytic and acidic decomposition of sodium borohydride is investigated. Practically, the target application is mobile fuel cells based on hydrogen production from storage in chemical hydrides. The LNCT would be used as a one step purification method with less cost and space requirements instead of applying the conventional purification techniques. Two catalysts were investigated for the production of hydrogen from the aqueous solution of NaBH4 in a small scale packed bed reaction column. The hydrogen generated from the catalytic decomposition of NaBH4 was accompanied by limited quantity of water vapour and alkaline mist. Nonetheless, higher quantities were generated when applying the acidic decomposition of NaBH4 and consequently the utilization of LNCT for H2 purification has proved useful and lead to a reduction in the content of these impurities; thereby the concentration of hydrogen in the outlet stream has increased.展开更多
文摘Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.
文摘A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.
文摘According to IPCC (Intergovemmental Panel on Climate Change) Fourth Report, carbon dioxide emissions from the combustion of fossil fuels have been identified as the major contributor to global warming and climate change. One of the new approaches for capturing carbon dioxide and subsequently lowering the emissions is based on gas hydrate crystallization. Gas hydrates have a large capacity for the storage of gases which also resemble an attractive method for gas filtration. The basis of the separation is the selective partition of the target component between the hydrate phase and the gaseous phase. It is expected that carbon dioxide is preferentially encaged into the hydrate crystal phase compared to the other components. In the present paper, after a comparison of gas hydrates with existing capture technologies, a novel apparatus for gas hydrate production is illustrated and results of a first set of experimental applications of the reactor for CO2 hydrate formation and separation are presented. In particular, the effects of two different promoters were investigated. Results show that the reactor allows a good level of temperature control, resulting in rapid hydrate formation and mild operating conditions. Results are a basis for setting up a procedure for CO2 separation and capture.
基金supported by National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China in the 11th Five-Year Plan (Grant No.2007BAC03A12)
文摘In the conceptual framework of adaptation policy assessment to climate change, adaptation measures can be categorized as two groups:facilitation and implementation. Facilitation measures refers to activities that enhance adaptive capacity, while implementation refers to activities that actually avoid adverse climate impacts on a system by reducing its exposure or sensitivity to climatic hazards, or by moderating relevant non-climatic factors. This paper aims to establish a matrix of implementation measures of adaptation to climate change, through four different ways how adaptation can influencc the relevant elements of climate change. reducing the exposure, reducing the sensitivity, alleviating the adverse impacts and reducing the negative non-climatic factors, and then further discuss the particular implementation measures of adaptation to climate change, through application studies on the selected sub-systems, intend to organize the disordered implementation measures in existent, and put forward some new measures under the guidance of this matrix, which could enrich and promote the system and content of implementation measures of adaptation.
基金Supported by Qinglan Project Foundation of Jiangsu Province and Doctoral Dissertation Innovate Foundation of Nanjing Uni-versity of Technology (No.BSCS200508).
文摘Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.
基金Supported by the National Natural Science Foundation of China (20576081, 20736009) and the Ph.D. Programs Foundation of Ministry of Education of China (20070610128).
文摘Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid.In a φ48mm bubble column reactor,the commercial process of toluene liquid phase oxidation was conducted with Co(CH3COO)2.4H2O as catalyst.The Co2+ concentration [Co2+] was determined by extraction spectrophotometry and hereby the Co3+ concentration [Co3+] was obtained by mass balance.The results showed that [Co3+] reached the maximum at about 25-30min.[Co3+] increased with increasing Co catalyst amount at total Co concentration<150 mg.L-1 of toluene.The conversion of toluene,yield and selectivity of benzoic acid increased with the increasing [Co3+/Co2+] max.A high [Co3+] and a high [Co3+]/[Co2+] ratio are beneficial to the reaction.
文摘The feasibility of using liquid nitrogen cold trap (LNCT) for the removal of water vapour and alkaline mist from the hydrogen gas stream which is generated from the catalytic and acidic decomposition of sodium borohydride is investigated. Practically, the target application is mobile fuel cells based on hydrogen production from storage in chemical hydrides. The LNCT would be used as a one step purification method with less cost and space requirements instead of applying the conventional purification techniques. Two catalysts were investigated for the production of hydrogen from the aqueous solution of NaBH4 in a small scale packed bed reaction column. The hydrogen generated from the catalytic decomposition of NaBH4 was accompanied by limited quantity of water vapour and alkaline mist. Nonetheless, higher quantities were generated when applying the acidic decomposition of NaBH4 and consequently the utilization of LNCT for H2 purification has proved useful and lead to a reduction in the content of these impurities; thereby the concentration of hydrogen in the outlet stream has increased.