It is generally accepted that climate has changed greatly on a global scale, and that the earth's climate has already wanned by some degrees over the past century. Ample evidence shows that there have been apparent c...It is generally accepted that climate has changed greatly on a global scale, and that the earth's climate has already wanned by some degrees over the past century. Ample evidence shows that there have been apparent changes in avian population dynamics, life-history traits and geographic ranges in response to global climate change. This paper briefly reviews the possible effects of climate change on avian biology and ecology all over the world, with emphasis on new findings from several long-term studies in Europe and North America, which provide unique opportunities to investigate how long-term changes in climate affect birds at both individual and population levels. The implications of such long-term studies for future bird studies in China is discussed with hope that this review can contribute to the preparation and plan for studies of climatic effects on birds in China in the future.展开更多
A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature rang...A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.展开更多
A quartz crystal microbalance (QCM) is used to determine the phase equilibrium of paclitaxel-carbon dioxide system in the pressure range of 0-11 MPa and at temperatures of 35 °C,40 °C and 45 °C.The ex...A quartz crystal microbalance (QCM) is used to determine the phase equilibrium of paclitaxel-carbon dioxide system in the pressure range of 0-11 MPa and at temperatures of 35 °C,40 °C and 45 °C.The experimental results indicated that gaseous CO2 could be absorbed poorly into paclitaxel.The swelling of paclitaxel film in CO2 was observed before paclitaxel dissolved into supercritical carbon dioxide (ScCO2) with the increase of pressure.It was found that ScCO2 was not a good solvent for paclitaxel.The mole fraction of paclitaxel in ScCO2 was in the range of (4.5×10-9)-(7.8×10-9) under all our experimental conditions.Therefore,a much higher pressure than the CO2 supercritical point and/or a cosolvent must be used in any processes wherever paclitaxel dissolution in ScCO2 is required.展开更多
This study presents a soil and water integrated model(SWIM) and associated statistical analyses for the Huaihe River Basin(HRB) based on daily meteorological, river runoff, and water resource data encompassing the per...This study presents a soil and water integrated model(SWIM) and associated statistical analyses for the Huaihe River Basin(HRB) based on daily meteorological, river runoff, and water resource data encompassing the period between 1959 and 2015. The aim of this research is to quantitatively analyze the rate of contribution of upstream runoff to that of the midstream as well as the influence of climate change and human activities in this section of the river. Our goal is to explain why extreme precipitation is concentrated in the upper reaches of the HRB while floods tend to occur frequently in the middle reaches of this river basin. Results show that the rate of contribution of precipitation to runoff in the upper reaches of the HRB is significantly higher than temperature. Data show that the maximum contribution rate of upstream runoff to that of the midstream can be as high as 2.23%, while the contribution of temperature is just 0.38%. In contrast, the rate of contribution of human activities to runoff is 87.20% in the middle reaches of the HRB, while that due to climate change is 12.80%. Frequent flood disasters therefore occur in the middle reaches of the HRB because of the combined effects of extreme precipitation in the upper reaches and human activities in the middle sections.展开更多
Climate change is ranked as one of the most severe threats to global biodiversity. This global phenomenon is particularly true for reptiles whose biology and ecology are closely linked to climate. In this study, we us...Climate change is ranked as one of the most severe threats to global biodiversity. This global phenomenon is particularly true for reptiles whose biology and ecology are closely linked to climate. In this study, we used over 1,300 independent occurrence points and different climate change emission scenarios to evaluate the potential risk of changing climatic conditions on the current and future potential distribution of a rock-dwelling lizard; the velvet gecko. Furthermore, we investigated if the current extent of protected area networks in Australia captures the full range distribution of this species currently and in the future. Our results show that climate change projections for the year 2075 have the potential to alter the distribution of the velvet gecko in southeastern Australia. Specifically, climate change may favor the range expansion of this species to encompass more suitable habitats. The trend of range expansion was qualitatively similar across the different cli- mate change scenarios used. Additionally, we observed that the current network of protected areas in southeast Australia does not fully account for the full range distribution of this species currently and in the future. Ongoing climate change may profoundly affect the potential range distribution of the velvet gecko population. Therefore, the restricted habitat of the velvet geckos should be the focus of intensive pre-emptive management efforts. This management prioritization should be extended to encompass the increases in suitable habitats observed in this study in order to maximize the microhabitats available for the survival of this species.展开更多
Extreme rainstorm and the subsequent flood increasingly threaten the security of human society and ecological environment with aggravation of global climate change and anthropogenic activity in recent years. Therefore...Extreme rainstorm and the subsequent flood increasingly threaten the security of human society and ecological environment with aggravation of global climate change and anthropogenic activity in recent years. Therefore, the research on flood mitigation service(FMS) of ecosystem should be paid more attention to mitigate the risk. In this paper, we assessed FMS in the Upper Reaches of Hanjiang River(URHR), China from 2000 to 2014 using the Soil Conservation Service Curve Number(SCS-CN) model, and further simulated the future FMS under two climate scenarios(in 2020 and 2030). The results reveal that the FMS presented a fluctuating rising trend in the URHR from 2000 to 2014. The FMS in southern URHR was higher than that of northern URHR, and the change rate of FMS in the upstream of URHR(western URHR) was higher than the downstream of URHR(eastern URHR). The future FMS under scenarios of Medium-High Emissions(A2) and Medium-Low Emissions(B2) will decrease consistently. As land use/land cover changes in the URHR are negligible, we concluded that the change in FMS was mainly driven by climate change, such as storm and runoff. Our study highlights that climate scenarios analysis should be incorporated into the assessment of hydrologic-related services to facilitate regional water resources management.展开更多
文摘It is generally accepted that climate has changed greatly on a global scale, and that the earth's climate has already wanned by some degrees over the past century. Ample evidence shows that there have been apparent changes in avian population dynamics, life-history traits and geographic ranges in response to global climate change. This paper briefly reviews the possible effects of climate change on avian biology and ecology all over the world, with emphasis on new findings from several long-term studies in Europe and North America, which provide unique opportunities to investigate how long-term changes in climate affect birds at both individual and population levels. The implications of such long-term studies for future bird studies in China is discussed with hope that this review can contribute to the preparation and plan for studies of climatic effects on birds in China in the future.
文摘A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.
基金Supported by the Jiangsu High-tech Project(BG2006038)
文摘A quartz crystal microbalance (QCM) is used to determine the phase equilibrium of paclitaxel-carbon dioxide system in the pressure range of 0-11 MPa and at temperatures of 35 °C,40 °C and 45 °C.The experimental results indicated that gaseous CO2 could be absorbed poorly into paclitaxel.The swelling of paclitaxel film in CO2 was observed before paclitaxel dissolved into supercritical carbon dioxide (ScCO2) with the increase of pressure.It was found that ScCO2 was not a good solvent for paclitaxel.The mole fraction of paclitaxel in ScCO2 was in the range of (4.5×10-9)-(7.8×10-9) under all our experimental conditions.Therefore,a much higher pressure than the CO2 supercritical point and/or a cosolvent must be used in any processes wherever paclitaxel dissolution in ScCO2 is required.
基金National Natural Science Foundation of China,No.41571018
文摘This study presents a soil and water integrated model(SWIM) and associated statistical analyses for the Huaihe River Basin(HRB) based on daily meteorological, river runoff, and water resource data encompassing the period between 1959 and 2015. The aim of this research is to quantitatively analyze the rate of contribution of upstream runoff to that of the midstream as well as the influence of climate change and human activities in this section of the river. Our goal is to explain why extreme precipitation is concentrated in the upper reaches of the HRB while floods tend to occur frequently in the middle reaches of this river basin. Results show that the rate of contribution of precipitation to runoff in the upper reaches of the HRB is significantly higher than temperature. Data show that the maximum contribution rate of upstream runoff to that of the midstream can be as high as 2.23%, while the contribution of temperature is just 0.38%. In contrast, the rate of contribution of human activities to runoff is 87.20% in the middle reaches of the HRB, while that due to climate change is 12.80%. Frequent flood disasters therefore occur in the middle reaches of the HRB because of the combined effects of extreme precipitation in the upper reaches and human activities in the middle sections.
文摘Climate change is ranked as one of the most severe threats to global biodiversity. This global phenomenon is particularly true for reptiles whose biology and ecology are closely linked to climate. In this study, we used over 1,300 independent occurrence points and different climate change emission scenarios to evaluate the potential risk of changing climatic conditions on the current and future potential distribution of a rock-dwelling lizard; the velvet gecko. Furthermore, we investigated if the current extent of protected area networks in Australia captures the full range distribution of this species currently and in the future. Our results show that climate change projections for the year 2075 have the potential to alter the distribution of the velvet gecko in southeastern Australia. Specifically, climate change may favor the range expansion of this species to encompass more suitable habitats. The trend of range expansion was qualitatively similar across the different cli- mate change scenarios used. Additionally, we observed that the current network of protected areas in southeast Australia does not fully account for the full range distribution of this species currently and in the future. Ongoing climate change may profoundly affect the potential range distribution of the velvet gecko population. Therefore, the restricted habitat of the velvet geckos should be the focus of intensive pre-emptive management efforts. This management prioritization should be extended to encompass the increases in suitable habitats observed in this study in order to maximize the microhabitats available for the survival of this species.
基金Natural Science Basic Research Plan in Shaanxi Province of China,No.2017JQ4009National Natural Science Foundation of China,No.41601182,No.41471097+4 种基金National Social Science Foundation of China,No.14AZD094Key Project of Chinese Ministry of Education,No.15JJD790022The National Key Research and Development Plan of China,No.2016YFC0501601The Science and Technology Service Network Initiative Project of Chinese Academy of Sciences,No.KFJ-STS-ZDTP-036Fundamental Research Funds for the Central University,No.GK201703053
文摘Extreme rainstorm and the subsequent flood increasingly threaten the security of human society and ecological environment with aggravation of global climate change and anthropogenic activity in recent years. Therefore, the research on flood mitigation service(FMS) of ecosystem should be paid more attention to mitigate the risk. In this paper, we assessed FMS in the Upper Reaches of Hanjiang River(URHR), China from 2000 to 2014 using the Soil Conservation Service Curve Number(SCS-CN) model, and further simulated the future FMS under two climate scenarios(in 2020 and 2030). The results reveal that the FMS presented a fluctuating rising trend in the URHR from 2000 to 2014. The FMS in southern URHR was higher than that of northern URHR, and the change rate of FMS in the upstream of URHR(western URHR) was higher than the downstream of URHR(eastern URHR). The future FMS under scenarios of Medium-High Emissions(A2) and Medium-Low Emissions(B2) will decrease consistently. As land use/land cover changes in the URHR are negligible, we concluded that the change in FMS was mainly driven by climate change, such as storm and runoff. Our study highlights that climate scenarios analysis should be incorporated into the assessment of hydrologic-related services to facilitate regional water resources management.