Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the...Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.展开更多
A laboratory scale downdraft biomass gasifier was designed to deliver a mechanical power of 4 kW and thermal power of about 15 kW. The gasifier was manufactured as a single piece having a water seal and cover. The gas...A laboratory scale downdraft biomass gasifier was designed to deliver a mechanical power of 4 kW and thermal power of about 15 kW. The gasifier was manufactured as a single piece having a water seal and cover. The gasifier was tested in natural downdraft and forced downdraft mode. Ignition of the fuel beneath the grate, during natural downdraft mode, using wood shavings as fuel, produced gas which burned with a blue flame for 15 minutes. Ignition at the throat, using either palm kernel shells or wood shavings, during the natural downdraft mode, the gasifier did not produce syngas. During the forced downdraft mode, fuel was ignited at the throat. Gasification was successful with the palm kernel shells, during forced downdraft, which produced gas which burned steadily with luminous flame for 15 minutes per kilogram of biomass fed. However, wood shavings experienced some bridging problems during the forced downdraft mode of operation. The fuel conversion rate of the gasifier, when using palm kernel shells as fuel in forced downdraft mode, was 4 kg/h. Forced downdraft mode of operation yielded better results and is the preferred operation of the gasifier.展开更多
Global warming is recently an urgent issue worldwide. The increase of carbon emissions induced by human economic activi- ties has become a major driving force behind global climate change. Thus, as a matter of social ...Global warming is recently an urgent issue worldwide. The increase of carbon emissions induced by human economic activi- ties has become a major driving force behind global climate change. Thus, as a matter of social responsibility, reasonable carbon con- straints should be implemented to ensure environmental security and sustainable development for every country. Based on a summary of studies that examined the relationship between carbon emissions and regional development, this paper shows that human activity-led carbon emission is caused by the combination of several influencing factors, including population size, income level, and technical pro- gress. Thus, a quantitative model derived from IPAT-ImPACT-Kaya series and STIRPAT models was established. Empirical analysis using multivariate nonlinear regression demonstrated that the origins of growing global carbon emission included the increasing influ- encing elasticity of the population size and the declining negative effect of technical progress. Meanwhile, in context of classification of country groups at different income levels, according to the comparison of fluctuating patterns of the influencing elasticity, technical progress was found as the main factor influencing carbon emission levels in high-income countries, and population size might he the controlling factor in middle-income countries. However, for low-income countries, the nonlinear relationship between carbon emission and its influencing factors was not significant, whereas population growth was identified as an important potential driving force in future carbon emissions. This study can therefore provide a reference for the formulation of policies on carbon constraints, especially to de- velop more efficient carbon mitigating policies for countries at different income levels.展开更多
Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are ...Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.展开更多
In this study, the heteroatom classes and molecular structures of nitrogen compounds in vacuum residue arecharacterized by the electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectromet...In this study, the heteroatom classes and molecular structures of nitrogen compounds in vacuum residue arecharacterized by the electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) combined with the Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that three basic nitrogencompounds, N1 (in which a molecule contains one nitrogen atom, similarly hereinafter), N1O1 and N2, are identified bytheir positive-ion mass spectra, and three non-basic nitrogen compounds, N1, N1O1, and N1S1, are characterized by theirnegative-ion mass spectra. Among these nitrogen compounds, the N1 class species are the most predominant. Combinedwith the data of ESI FT-ICR MS and FT-IR, the basic N1 class species are likely alkyl quinolines, naphthenic quinolines,acridines, benzonacridines, while the abundant non-basic N1 class species are derivatives of benzocarbazole. In comparisonwith CGO, the N1 basic nitrogen compounds in VR exhibit a higher average degree of condensation and have much longeralkyl side chains.展开更多
基金Supported by the Major Research Project of National Natural Science Foundation Committee(91325302)China Postdoctoral Foundation(2014M560110)Hebei Social Science Foundation(HB15GL087)~~
文摘Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.
文摘A laboratory scale downdraft biomass gasifier was designed to deliver a mechanical power of 4 kW and thermal power of about 15 kW. The gasifier was manufactured as a single piece having a water seal and cover. The gasifier was tested in natural downdraft and forced downdraft mode. Ignition of the fuel beneath the grate, during natural downdraft mode, using wood shavings as fuel, produced gas which burned with a blue flame for 15 minutes. Ignition at the throat, using either palm kernel shells or wood shavings, during the natural downdraft mode, the gasifier did not produce syngas. During the forced downdraft mode, fuel was ignited at the throat. Gasification was successful with the palm kernel shells, during forced downdraft, which produced gas which burned steadily with luminous flame for 15 minutes per kilogram of biomass fed. However, wood shavings experienced some bridging problems during the forced downdraft mode of operation. The fuel conversion rate of the gasifier, when using palm kernel shells as fuel in forced downdraft mode, was 4 kg/h. Forced downdraft mode of operation yielded better results and is the preferred operation of the gasifier.
基金Under the auspices of Major State Basic Research Development Program of China(No.2012CB955802)National Natural Science Foundation of China(No.41171099)Strategy of Public Participation of Low Carbon Development in China(No.201315)
文摘Global warming is recently an urgent issue worldwide. The increase of carbon emissions induced by human economic activi- ties has become a major driving force behind global climate change. Thus, as a matter of social responsibility, reasonable carbon con- straints should be implemented to ensure environmental security and sustainable development for every country. Based on a summary of studies that examined the relationship between carbon emissions and regional development, this paper shows that human activity-led carbon emission is caused by the combination of several influencing factors, including population size, income level, and technical pro- gress. Thus, a quantitative model derived from IPAT-ImPACT-Kaya series and STIRPAT models was established. Empirical analysis using multivariate nonlinear regression demonstrated that the origins of growing global carbon emission included the increasing influ- encing elasticity of the population size and the declining negative effect of technical progress. Meanwhile, in context of classification of country groups at different income levels, according to the comparison of fluctuating patterns of the influencing elasticity, technical progress was found as the main factor influencing carbon emission levels in high-income countries, and population size might he the controlling factor in middle-income countries. However, for low-income countries, the nonlinear relationship between carbon emission and its influencing factors was not significant, whereas population growth was identified as an important potential driving force in future carbon emissions. This study can therefore provide a reference for the formulation of policies on carbon constraints, especially to de- velop more efficient carbon mitigating policies for countries at different income levels.
文摘Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.
文摘In this study, the heteroatom classes and molecular structures of nitrogen compounds in vacuum residue arecharacterized by the electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) combined with the Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that three basic nitrogencompounds, N1 (in which a molecule contains one nitrogen atom, similarly hereinafter), N1O1 and N2, are identified bytheir positive-ion mass spectra, and three non-basic nitrogen compounds, N1, N1O1, and N1S1, are characterized by theirnegative-ion mass spectra. Among these nitrogen compounds, the N1 class species are the most predominant. Combinedwith the data of ESI FT-ICR MS and FT-IR, the basic N1 class species are likely alkyl quinolines, naphthenic quinolines,acridines, benzonacridines, while the abundant non-basic N1 class species are derivatives of benzocarbazole. In comparisonwith CGO, the N1 basic nitrogen compounds in VR exhibit a higher average degree of condensation and have much longeralkyl side chains.