To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubbl...To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubble sizes.High-speed photography in conjunction with an in-house bubble image processing code was used.During the evolution of the bubble,bubble shape,traveling trajectory and the variation of bubble velocity were obtained.Bubble sizes acquired varied from0.25to8.69mm.The results show that after the bubble is separated from the nozzle,bubble shape sequentially experiences ellipsoidal shape,hat shape,mushroom shape and eventually the stable ellipsoidal shape.As the bubble size increases,the oscillation of the bubble surface is intensified.At the stabilization stage of bubble motion,bubble trajectories conform approximately to the sinusoidal function.Meanwhile,with the increase in bubble size,the bubble trajectory tends to be straightened and the influence of the horizontal bubble velocity component on the bubble trajectory attenuates.The present results explain the phenomena related to relatively large bubble size,which extends the existing relationship between the bubble terminal velocity and the equivalent bubble diameter.展开更多
Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on...Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.展开更多
基金Project(51676087)supported by the National Natural Science Foundation of China
文摘To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubble sizes.High-speed photography in conjunction with an in-house bubble image processing code was used.During the evolution of the bubble,bubble shape,traveling trajectory and the variation of bubble velocity were obtained.Bubble sizes acquired varied from0.25to8.69mm.The results show that after the bubble is separated from the nozzle,bubble shape sequentially experiences ellipsoidal shape,hat shape,mushroom shape and eventually the stable ellipsoidal shape.As the bubble size increases,the oscillation of the bubble surface is intensified.At the stabilization stage of bubble motion,bubble trajectories conform approximately to the sinusoidal function.Meanwhile,with the increase in bubble size,the bubble trajectory tends to be straightened and the influence of the horizontal bubble velocity component on the bubble trajectory attenuates.The present results explain the phenomena related to relatively large bubble size,which extends the existing relationship between the bubble terminal velocity and the equivalent bubble diameter.
基金Project(51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key R&D Plan of Hunan Province of China+1 种基金Project(2015zzts044) supported by Fundamental Research Funds for the Central Universities,ChinaProject(201606370092) supported by the China Scholarship Council
文摘Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.