A gas liquid centrifugal separator is widely used in industry on account of its simple geometry and little maintenance. These separators have considerable advantages over filters, scrubbers or precipitators in term of...A gas liquid centrifugal separator is widely used in industry on account of its simple geometry and little maintenance. These separators have considerable advantages over filters, scrubbers or precipitators in term of compact design, lower pressure drop and higher capacity. A gas liquid centrifugal separator is a device that utilizes centrifugal forces and low pressure caused by rotational motion to separate liquid from gas by density differences. Efficient and reliable separation is required for the optimum operation. These separators are often operated at less than peak efficiency due to the entrainment of separated liquid through an outlet pipe which is closely associated with the very complicated flow phenomena involved. Design parameters such as length of the separation space, vane exit angle, inlet to outlet diameter ratio, models for separation efficiency and pressure drop as a function of physical dimensions are not available in literature. This leaves the designer with very little to go on except known designs and experimentation. The aim of present study is to perform a parametric study to get higher efficiency for gas-liquid separator. A parametric study has been carded out with the help of CFD tools to analyze a separation performance of a centrifugal separator by varying the length of separator space. The best design parameters are analyzed based upon obtained results, tangential velocities, vortices, total pressure losses. From the present study several attempts are made to improve the performance of conventional centrifugal separators.展开更多
文摘A gas liquid centrifugal separator is widely used in industry on account of its simple geometry and little maintenance. These separators have considerable advantages over filters, scrubbers or precipitators in term of compact design, lower pressure drop and higher capacity. A gas liquid centrifugal separator is a device that utilizes centrifugal forces and low pressure caused by rotational motion to separate liquid from gas by density differences. Efficient and reliable separation is required for the optimum operation. These separators are often operated at less than peak efficiency due to the entrainment of separated liquid through an outlet pipe which is closely associated with the very complicated flow phenomena involved. Design parameters such as length of the separation space, vane exit angle, inlet to outlet diameter ratio, models for separation efficiency and pressure drop as a function of physical dimensions are not available in literature. This leaves the designer with very little to go on except known designs and experimentation. The aim of present study is to perform a parametric study to get higher efficiency for gas-liquid separator. A parametric study has been carded out with the help of CFD tools to analyze a separation performance of a centrifugal separator by varying the length of separator space. The best design parameters are analyzed based upon obtained results, tangential velocities, vortices, total pressure losses. From the present study several attempts are made to improve the performance of conventional centrifugal separators.