In this paper, the effect of the imaginary circle diameter opi and the initial flow field on the aerodynamic field in a tangentially fired furnace was studied by numerical simulation and experiments in the cold model....In this paper, the effect of the imaginary circle diameter opi and the initial flow field on the aerodynamic field in a tangentially fired furnace was studied by numerical simulation and experiments in the cold model. Results show that merely reducing the imaginary circle diameter rki can not significantly reduce the rotatiollal diameter op in the range considered. The flow still rotates coullter-clockwise stably and does not change rotation direction when the direction of all jet axes are defiected suddenly to the opposite rotation direction by up to 5.4" in a countereclockwise llow field. It is the first time that the numerical sAnulation results were obtained which agreed quite well with this experimental phenomena qualitatively. The experimental data, i.e., the rotational diameter & and the maximum velocity on the syrnmetric central line of fUrnace Vm, are only a bit larger than the simulation results. It is shown that the initial flow field has an important influence on the aerodynamic field in the furnace. Other measures have to be taken as wel1 in order to reduce & to resist slagging and high temperature corrosion of furnace tubes. Moreover, a new kind of grid arrangement was proposed in this paper, which can reduce effectively the false diffosion at the exit zone of burner.展开更多
We discuss the warm inflation in the presence of standard scalar field model and modified Chaplyggin gas in brahe-world scenario. We consider weak and strong dissipative regimes with generalized dissipative coefficien...We discuss the warm inflation in the presence of standard scalar field model and modified Chaplyggin gas in brahe-world scenario. We consider weak and strong dissipative regimes with generalized dissipative coefficient. We extract various inflationary parameters. For example, we analyze the behavior of different ratios (ratio of dissipative co-efficient and Hubble parameter Г/3H, ratio of temperature and Hubble parameter T/ H, scalar-to-tensor ratio 'r) with respect to spectral index ns for the weak and strong dissipative regimes through parametric plotting. It is found that T/H and Г/3H satisfied the required conditions in both dissipative regimes. It is also noted that the spectral index (ns) ns=0.96+0.10-0.10 It is remarked here that our results are consistence with observational data WMAP7, WMAP9, and recent Planck data.展开更多
文摘In this paper, the effect of the imaginary circle diameter opi and the initial flow field on the aerodynamic field in a tangentially fired furnace was studied by numerical simulation and experiments in the cold model. Results show that merely reducing the imaginary circle diameter rki can not significantly reduce the rotatiollal diameter op in the range considered. The flow still rotates coullter-clockwise stably and does not change rotation direction when the direction of all jet axes are defiected suddenly to the opposite rotation direction by up to 5.4" in a countereclockwise llow field. It is the first time that the numerical sAnulation results were obtained which agreed quite well with this experimental phenomena qualitatively. The experimental data, i.e., the rotational diameter & and the maximum velocity on the syrnmetric central line of fUrnace Vm, are only a bit larger than the simulation results. It is shown that the initial flow field has an important influence on the aerodynamic field in the furnace. Other measures have to be taken as wel1 in order to reduce & to resist slagging and high temperature corrosion of furnace tubes. Moreover, a new kind of grid arrangement was proposed in this paper, which can reduce effectively the false diffosion at the exit zone of burner.
文摘We discuss the warm inflation in the presence of standard scalar field model and modified Chaplyggin gas in brahe-world scenario. We consider weak and strong dissipative regimes with generalized dissipative coefficient. We extract various inflationary parameters. For example, we analyze the behavior of different ratios (ratio of dissipative co-efficient and Hubble parameter Г/3H, ratio of temperature and Hubble parameter T/ H, scalar-to-tensor ratio 'r) with respect to spectral index ns for the weak and strong dissipative regimes through parametric plotting. It is found that T/H and Г/3H satisfied the required conditions in both dissipative regimes. It is also noted that the spectral index (ns) ns=0.96+0.10-0.10 It is remarked here that our results are consistence with observational data WMAP7, WMAP9, and recent Planck data.