This study aimed to conduct statistical analysis of temperature,relative humidity,wind direction,wind velocity,deep ground temperature and other related data from National Meteorological Observing Station of Hejian Ci...This study aimed to conduct statistical analysis of temperature,relative humidity,wind direction,wind velocity,deep ground temperature and other related data from National Meteorological Observing Station of Hejian City in 2012.According to the results,observation data varied due to different instruments and equipments,surrounding environments and underlying surface properties.The difference value of monthly average temperature between new site and old site ranged from-0.5 to 0 ℃; the difference value of monthly average maximum temperature ranged from-0.4 to 0.2 ℃; the difference value of monthly average minimum temperature ranged from-0.8 to 0 ℃; the difference value of monthly extreme maximum temperature ranged from-1.1 to 0.6 ℃; the difference value of monthly extreme minimum temperature ranged from-1.2 to 0.3 ℃.Annual average temperature,annual average maximum temperature and annual average minimum temperature in new site were lower than those in old site; annual extreme maximum temperature in new site was higher than that in old site; annual extreme minimum temperature in new site was lower than that in old site.The difference value of monthly average relative humidity between new site and old site ranged from 2% to 6%; the difference value of monthly minimum relative humidity ranged from-4% to 5%.Annual minimum relative humidity in new site was consistent with that in old site.The difference value of 2 min average wind velocity between new site and old site ranged from-0.1 to 0.4 m/s; the difference value of monthly maximum wind velocity ranged from-1.2 to 2.2 m/s; the difference value of monthly extreme wind velocity ranged from-2.0 to 2.8 m/s.Annual maximum wind velocity in new site was basically consistent with that in old site; annual extreme wind velocity in new site was significantly higher than that in old site; annual wind direction frequency in new site was lower than that in old site; annual most frequent wind direction in new site was S and that in old site was SSW.The difference value of average temperature at the depth of 40 cm ranged from-1.1 to 2.5 ℃; the difference value of average temperature at the depth of 80 cm ranged from-2.4 to 2.1 ℃; the difference value of average temperature at the depth of 160 cm ranged from-2.5 to 2.7 ℃; the difference value of average temperature at the depth of 320 cm ranged from-1.6 to 1.1 ℃.Annual average temperatures at the depths of 40 and 160 cm in new site were higher than those in old site,while annual average temperatures at the depths of 80 and 320 cm in new site were lower than those in old site.This paper provided certain correction stand for the use of observation data from new and old sites.展开更多
During August 2013,a mobile Rayleigh lidar was deployed in Lhasa,Tibet(29.6°N,91.0°E) for making measurements of middle atmosphere densities and temperatures from 30 to 90 km.In this paper,the authors presen...During August 2013,a mobile Rayleigh lidar was deployed in Lhasa,Tibet(29.6°N,91.0°E) for making measurements of middle atmosphere densities and temperatures from 30 to 90 km.In this paper,the authors present the initial results from this scientific campaign,Middle Atmosphere Remote Mobile Observatory in Tibet(MARMOT),and compared the results to the MSIS-00(Mass Spectrometer and Incoherent Scatter) model.This work will advance our understanding of middle atmosphere dynamic processes,especially over the Tibetan Plateau area.展开更多
In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal se...In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams.展开更多
On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new cal...On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new calculating method of gas content in coal seam influenced by in situ stress grads and ground temperature. At the same time, the contrast of the measuring results of coal bed gas pressure with the computing results of coal bed gas pressure and gas content in coal seam in theory indicate that the computing method can well reflect the authenticity of gas content in coal seam,and will further perfect the computing method of gas content in coal seam in theory,and have important value in theory on analyzing gas content in coal seam and forecasting distribution law of gas content in coal seam in deep mine.展开更多
文摘This study aimed to conduct statistical analysis of temperature,relative humidity,wind direction,wind velocity,deep ground temperature and other related data from National Meteorological Observing Station of Hejian City in 2012.According to the results,observation data varied due to different instruments and equipments,surrounding environments and underlying surface properties.The difference value of monthly average temperature between new site and old site ranged from-0.5 to 0 ℃; the difference value of monthly average maximum temperature ranged from-0.4 to 0.2 ℃; the difference value of monthly average minimum temperature ranged from-0.8 to 0 ℃; the difference value of monthly extreme maximum temperature ranged from-1.1 to 0.6 ℃; the difference value of monthly extreme minimum temperature ranged from-1.2 to 0.3 ℃.Annual average temperature,annual average maximum temperature and annual average minimum temperature in new site were lower than those in old site; annual extreme maximum temperature in new site was higher than that in old site; annual extreme minimum temperature in new site was lower than that in old site.The difference value of monthly average relative humidity between new site and old site ranged from 2% to 6%; the difference value of monthly minimum relative humidity ranged from-4% to 5%.Annual minimum relative humidity in new site was consistent with that in old site.The difference value of 2 min average wind velocity between new site and old site ranged from-0.1 to 0.4 m/s; the difference value of monthly maximum wind velocity ranged from-1.2 to 2.2 m/s; the difference value of monthly extreme wind velocity ranged from-2.0 to 2.8 m/s.Annual maximum wind velocity in new site was basically consistent with that in old site; annual extreme wind velocity in new site was significantly higher than that in old site; annual wind direction frequency in new site was lower than that in old site; annual most frequent wind direction in new site was S and that in old site was SSW.The difference value of average temperature at the depth of 40 cm ranged from-1.1 to 2.5 ℃; the difference value of average temperature at the depth of 80 cm ranged from-2.4 to 2.1 ℃; the difference value of average temperature at the depth of 160 cm ranged from-2.5 to 2.7 ℃; the difference value of average temperature at the depth of 320 cm ranged from-1.6 to 1.1 ℃.Annual average temperatures at the depths of 40 and 160 cm in new site were higher than those in old site,while annual average temperatures at the depths of 80 and 320 cm in new site were lower than those in old site.This paper provided certain correction stand for the use of observation data from new and old sites.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.41127901)the National Basic Research Program of China (973 program,Grant No.2010CB428601)the "100 Technical Talents" Program of the Chinese Academy of Sciences (CAS)
文摘During August 2013,a mobile Rayleigh lidar was deployed in Lhasa,Tibet(29.6°N,91.0°E) for making measurements of middle atmosphere densities and temperatures from 30 to 90 km.In this paper,the authors present the initial results from this scientific campaign,Middle Atmosphere Remote Mobile Observatory in Tibet(MARMOT),and compared the results to the MSIS-00(Mass Spectrometer and Incoherent Scatter) model.This work will advance our understanding of middle atmosphere dynamic processes,especially over the Tibetan Plateau area.
基金support of the Open Fund of State Key Laboratory of Oil and Gas Reser-voir Geology and Exploitation (Southwest Petroleum University) (PLN0610)the Opening Project of He-nan Key Laboratory of Coal Mine Methane and Fire Prevention (HKLGF200706)+3 种基金 the National Natural Science Foundation of China (No. 50334060, 50474025, 50774106)the National Key Fundamental Research and Development Program of China (No. 2005CB221502)the Natural Science Innovation Group Foundation of China (No. 50621403)the Natural Science Foundation of Chongqing of China(No. CSTC, 2006BB7147, 2006AA7002).
文摘In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams.
文摘On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new calculating method of gas content in coal seam influenced by in situ stress grads and ground temperature. At the same time, the contrast of the measuring results of coal bed gas pressure with the computing results of coal bed gas pressure and gas content in coal seam in theory indicate that the computing method can well reflect the authenticity of gas content in coal seam,and will further perfect the computing method of gas content in coal seam in theory,and have important value in theory on analyzing gas content in coal seam and forecasting distribution law of gas content in coal seam in deep mine.