This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity dis...This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity distribution function obtained by the DSMC method converges to a modified form of the Boltzmann equation,which is the equation of the gas-kinetic unified algorithm to directly solve the molecular velocity distribution function.Their convergence is derived through mathematical treatment.The collision frequency is presented using various molecular models and the local equilibrium distribution function is obtained by Enskog expansion using the converged equation of the DSMC method.These two expressions agree with those used in the unified algorithm.Numerical validation of the converging consistency between these two approaches is illustrated by simulating the pressure driven Poiseuille flow in the slip transition flow regime and the two-dimensional and three-dimensional flows around a circular cylinder and spherical-cone reentry body covering the whole flow regimes from low speed micro-channel flow to high speed non-equilibrium aerothermodynamics.展开更多
Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generate...Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 91016027 and 91130018)
文摘This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity distribution function obtained by the DSMC method converges to a modified form of the Boltzmann equation,which is the equation of the gas-kinetic unified algorithm to directly solve the molecular velocity distribution function.Their convergence is derived through mathematical treatment.The collision frequency is presented using various molecular models and the local equilibrium distribution function is obtained by Enskog expansion using the converged equation of the DSMC method.These two expressions agree with those used in the unified algorithm.Numerical validation of the converging consistency between these two approaches is illustrated by simulating the pressure driven Poiseuille flow in the slip transition flow regime and the two-dimensional and three-dimensional flows around a circular cylinder and spherical-cone reentry body covering the whole flow regimes from low speed micro-channel flow to high speed non-equilibrium aerothermodynamics.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1530103,and 11621202)Science Challenge Project(Grant No.TZ2016001)
文摘Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.