The influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index. The annual cycle of cyclogenesis frequency over the BoB shows ...The influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index. The annual cycle of cyclogenesis frequency over the BoB shows an asymmetric bimodal pattern with the maximum genesis number appearing in late October and the second largest in early May. The two peaks correspond to the withdrawal and onset of the BoB summer monsoon, respectively. The semimonthly GP index calculated without TC days over the BoB is consistent with TC genesis frequency, indicating that the index captures the monsoon-induced changes in the environment that are responsible for the seasonal variation of TC genesis frequency. Of the four environmental variables (i.e., low-level vorticity, mid-level relative humidity, potential intensity, and vertical wind shear) that enter into the GP index, the potential intensity makes the largest contribution to the bimodal distribution, followed by vertical wind shear due to small wind speed during the summer monsoon onset and withdrawal. The difference in TC genesis frequency between autumn and late spring is mainly owing to the relative humid-ity difference because a divergence (convergence) of horizontal moisture flux associated with cold dry northerlies (warm wet wester-lies) dominates the BoB in late spring (autumn).展开更多
This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea(SCS). An automatic eddy detection method,based on the geometry of velocity vectors,was adopted to ...This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea(SCS). An automatic eddy detection method,based on the geometry of velocity vectors,was adopted to obtain an eddy dataset from 21 years of satellite altimeter data. Analysis revealed that the number of anticyclonic eddies was nearly equal to cyclonic eddies; in the SCS,cyclonic eddies are generally stronger than anticyclonic eddies and anticyclonic eddies are larger and longer-lived than cyclonic eddies. Anticyclonic eddies tend to survive longer in the spring and summer,while cyclonic eddies have longer lifetimes in the autumn and winter. The characteristics and seasonal variations of eddies in the SCS are strongly related to variations in general ocean circulation,in the homogeneity of surface wind stress,and in the unevenness of bottom topography in the SCS. The spatial and temporal variation of mesoscale eddies in the SCS could,therefore,be an important index for understanding local hydrodynamics and regional climate change.展开更多
During the Asian summer monsoon(ASM)season,the process of stratosphere-troposphere exchange significantly affects the concentration and spatial distribution of chemical constituents in the upper troposphere and lower ...During the Asian summer monsoon(ASM)season,the process of stratosphere-troposphere exchange significantly affects the concentration and spatial distribution of chemical constituents in the upper troposphere and lower stratosphere(UTLS).However,the effect of the intensity of the Asian summer monsoon anticyclone(ASMA)on the horizontal distribution of chemical species within and around the ASMA,especially on the daily time scale,remains unclear.Here,the authors use the MERRA-2 reanalysis dataset and Aura Microwave Limb Sounder observations to study the impact of ASMA intensity on chemical distributions at 100 hPa during the ASM season.The intraseasonal variation of ASMA is classified into a strong period(SP)and weak period(WP),which refer to the periods when the intensity of ASMA remains strong and weak,respectively.The relatively low ozone(O_(3))region is found to be larger at 100 hPa during SPs,while its mixing ratio is lower than during WPs in summer.In June,analysis shows that the O_(3) horizontal distribution is mainly related to the intensity of AMSA,especially during SPs in June,while deep convections also impact the O_(3) horizontal distribution in July and August.These results indicate that the intraseasonal variation of the ASMA intensity coupled to deep convection can significantly affect the chemical distribution in the UTLS region during the ASM season.展开更多
It is well known that riblet applied on compressor blades is a promising flow control technique. However, detailed investigation of its effects on the flow field of turbomachinery is rare in existing literatures. This...It is well known that riblet applied on compressor blades is a promising flow control technique. However, detailed investigation of its effects on the flow field of turbomachinery is rare in existing literatures. This paper presents a detailed experimental investigation of effects of distributed riblet on the flow field of an axial compressor iso- lated-rotor stage. The research was performed in a large-scale facility respectively with two configurations, in- eluding grooved hub, and grooved surface on both hub and partial suction surface. The riblet film is rectangle grooved type with a height of 0.1 ram. The flow field at 10% chord downstream from the cascade trailing edge was measured using a mini five-hole pressure probe and a total pressure probe. The testing was conducted at sev- eral operational points under two reduced rotational speeds. Stagnation pressure loss in rotational frame was cal- culated and compared with the control test in which a smooth film was applied to the corresponding position. Results show that with the grooved hub configuration at the design operation point of the lower rotational speed, the riblet film provides an obvious improvement of a 48% reduction of total pressure loss in rotational frame. Also, a distinct weaken hub comer vortex was identified. In the meantime, there exists a deviation of flow angle about 5 degrees at 20%-80% span which previously was not considered to be the affected region.展开更多
基金supported by the National Basic Research Program of China(973Program:2012CB955604)National Natural Science Foundation of China(No.40975038,40830106)the CMA Program(GYHY200906008)
文摘The influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index. The annual cycle of cyclogenesis frequency over the BoB shows an asymmetric bimodal pattern with the maximum genesis number appearing in late October and the second largest in early May. The two peaks correspond to the withdrawal and onset of the BoB summer monsoon, respectively. The semimonthly GP index calculated without TC days over the BoB is consistent with TC genesis frequency, indicating that the index captures the monsoon-induced changes in the environment that are responsible for the seasonal variation of TC genesis frequency. Of the four environmental variables (i.e., low-level vorticity, mid-level relative humidity, potential intensity, and vertical wind shear) that enter into the GP index, the potential intensity makes the largest contribution to the bimodal distribution, followed by vertical wind shear due to small wind speed during the summer monsoon onset and withdrawal. The difference in TC genesis frequency between autumn and late spring is mainly owing to the relative humid-ity difference because a divergence (convergence) of horizontal moisture flux associated with cold dry northerlies (warm wet wester-lies) dominates the BoB in late spring (autumn).
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(No.U1133001)the NSFC-Shandong Joint Fund for Marine Science Research Centers Grant(No.U1406401)
文摘This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea(SCS). An automatic eddy detection method,based on the geometry of velocity vectors,was adopted to obtain an eddy dataset from 21 years of satellite altimeter data. Analysis revealed that the number of anticyclonic eddies was nearly equal to cyclonic eddies; in the SCS,cyclonic eddies are generally stronger than anticyclonic eddies and anticyclonic eddies are larger and longer-lived than cyclonic eddies. Anticyclonic eddies tend to survive longer in the spring and summer,while cyclonic eddies have longer lifetimes in the autumn and winter. The characteristics and seasonal variations of eddies in the SCS are strongly related to variations in general ocean circulation,in the homogeneity of surface wind stress,and in the unevenness of bottom topography in the SCS. The spatial and temporal variation of mesoscale eddies in the SCS could,therefore,be an important index for understanding local hydrodynamics and regional climate change.
基金sponsored by Strategic Priority Research Program of the Chinese Academy of Science[grant No.XDA17010106]the National Key Research and Development Program of China[grant Nos.2018YFC1505703 and 2018YFC1506704].
文摘During the Asian summer monsoon(ASM)season,the process of stratosphere-troposphere exchange significantly affects the concentration and spatial distribution of chemical constituents in the upper troposphere and lower stratosphere(UTLS).However,the effect of the intensity of the Asian summer monsoon anticyclone(ASMA)on the horizontal distribution of chemical species within and around the ASMA,especially on the daily time scale,remains unclear.Here,the authors use the MERRA-2 reanalysis dataset and Aura Microwave Limb Sounder observations to study the impact of ASMA intensity on chemical distributions at 100 hPa during the ASM season.The intraseasonal variation of ASMA is classified into a strong period(SP)and weak period(WP),which refer to the periods when the intensity of ASMA remains strong and weak,respectively.The relatively low ozone(O_(3))region is found to be larger at 100 hPa during SPs,while its mixing ratio is lower than during WPs in summer.In June,analysis shows that the O_(3) horizontal distribution is mainly related to the intensity of AMSA,especially during SPs in June,while deep convections also impact the O_(3) horizontal distribution in July and August.These results indicate that the intraseasonal variation of the ASMA intensity coupled to deep convection can significantly affect the chemical distribution in the UTLS region during the ASM season.
基金funded by the National Natural Science Foundation of China,Grant No.51161130525 and 51136003supported by the 111 Project,No.B07009
文摘It is well known that riblet applied on compressor blades is a promising flow control technique. However, detailed investigation of its effects on the flow field of turbomachinery is rare in existing literatures. This paper presents a detailed experimental investigation of effects of distributed riblet on the flow field of an axial compressor iso- lated-rotor stage. The research was performed in a large-scale facility respectively with two configurations, in- eluding grooved hub, and grooved surface on both hub and partial suction surface. The riblet film is rectangle grooved type with a height of 0.1 ram. The flow field at 10% chord downstream from the cascade trailing edge was measured using a mini five-hole pressure probe and a total pressure probe. The testing was conducted at sev- eral operational points under two reduced rotational speeds. Stagnation pressure loss in rotational frame was cal- culated and compared with the control test in which a smooth film was applied to the corresponding position. Results show that with the grooved hub configuration at the design operation point of the lower rotational speed, the riblet film provides an obvious improvement of a 48% reduction of total pressure loss in rotational frame. Also, a distinct weaken hub comer vortex was identified. In the meantime, there exists a deviation of flow angle about 5 degrees at 20%-80% span which previously was not considered to be the affected region.