Landfalling tropical cyclones(LTCs)include those TCs approaching the land and moving across the coast.Structure and intensity change for LTCs include change of the eye wall,spiral rain band,mesoscale vortices,low-laye...Landfalling tropical cyclones(LTCs)include those TCs approaching the land and moving across the coast.Structure and intensity change for LTCs include change of the eye wall,spiral rain band,mesoscale vortices,low-layer shear lines and tornadoes in the envelope region of TC,pre-TC squall lines,remote rain bands,core region intensity and extratropical transition(ET)processes,etc.Structure and intensity change of TC are mainly affected by three aspects,namely,environmental effects,inner core dynamics and underlying surface forcing.Structure and intensity change of coastal TCs will be especially affected by seaboard topography,oceanic stratification above the continental shelf and cold dry continental airflow,etc.Rapid changes of TC intensity,including rapid intensification and sudden weakening and dissipation,are the small probability events which are in lack of effective forecasting techniques up to now.Diagnostic analysis and mechanism study will help improve the understanding and prediction of the rapid change phenomena in TCs.展开更多
Conditional (CNOP) obtained by nonlinear optimal perturbation the ensemble-based calculation method is employed to find possible sensitive areas for improving 48-h or more than 48-h tropical cyclone (TC) track pr...Conditional (CNOP) obtained by nonlinear optimal perturbation the ensemble-based calculation method is employed to find possible sensitive areas for improving 48-h or more than 48-h tropical cyclone (TC) track predictions in several cases affecting China in 2007. These sensitive areas are examined by observing system simulation experiments (OSSEs). Results show that these sensitive areas improve TC track predictions for 48 h or more to different extents. Further analysis is performed to determine the distribution characteristics of sensitive areas in these cases. Results show that areas south of Luzon and over surrounding oceans are significant for 48-h or more than 48-h TC track predictions, especially 60-h to 72-h track predictions. Areas over oceans north or east to Taiwan Island seem to be secondary sensitive for 48-h or more than 48-h TC track predictions.展开更多
The monthly prediction skill for tropical cyclone(TC)activity in the South China Sea(SCS)during the typhoon season(July to November)was evaluated using the FGOALS-f2 ensemble prediction system.Specifically,the predict...The monthly prediction skill for tropical cyclone(TC)activity in the South China Sea(SCS)during the typhoon season(July to November)was evaluated using the FGOALS-f2 ensemble prediction system.Specifically,the prediction skill of the system at a 10-day lead time for monthly TC activity is given based on 35-year(1981–2015)hindcasts with 24 ensemble members.The results show that FGOALS-f2 can capture the climatology of TC track densities in each month,but there is a delay in the monthly southward movement in the area of high track densities of TCs.The temporal correlation coefficient of TC frequency fluctuates across the different months,among which the highest appears in October(0.59)and the lowest in August(0.30).The rank correlation coefficients of TC track densities are relatively higher(R>0.6)in July,September,and November,while those in August and October are relatively lower(R within 0.2 to 0.6).For real-time prediction of TCs in 2020(July to November),FGOALS-f2 demonstrates a skillful probabilistic prediction of TC genesis and movement.Besides,the system successfully forecasts the correct sign of monthly anomalies of TC frequency and accumulated cyclone energy for 2020(July to November)in the SCS.展开更多
Around 30 October 2012, Hurricane Sandy made landfall along the New Jersey shoreline after its completion of extratropical transition and transformation into an extratropical cyclone. The strong gale induced a catastr...Around 30 October 2012, Hurricane Sandy made landfall along the New Jersey shoreline after its completion of extratropical transition and transformation into an extratropical cyclone. The strong gale induced a catastrophic storm surge, and caused 72 death and damage of more than $50 billion. In this paper, the evolutionary process and spatial structure of the Hurricane Sandy during its extratropical transition were investigated by using Weather Research and Forecasting (WRF) version 3.3.1 modeling resuits and National Center for Environmental Prediction (NCEP) Coupled Forecast System model version 2 reanalysis datasets (CFSv2). It is found that during the upper-level trough interaction on 29 October, Sandy gradually fused with a pre-existing mid-latitude low-pressure system, and finished the re-intensification. WRF modeling results showed that the second peak occurred mainly due to the enhanced vertical motion, reduced vertical wind shear as well as the supplement of potential vorticity resulting from trough interaction over the southeast of Great Lakes. The cold continental air from the back of trough was encircled within the warm core system cyclonically, forming the characteristic of warm seclusion.展开更多
A new composite index called the yearly tropical cyclone potential impact(YTCPI)is introduced.The relationship between YTCPI and activities of tropical cyclones(TCs)in China,disaster loss,and main ambient fields are i...A new composite index called the yearly tropical cyclone potential impact(YTCPI)is introduced.The relationship between YTCPI and activities of tropical cyclones(TCs)in China,disaster loss,and main ambient fields are investigated to show the potential of YTCPI as a new tool for short-term climate prediction of TCs.YTCPI can indicate TC activity and potential disaster loss.As correlation coefficients between YTCPI and frequency of landfalling TCs,the frequency of TCs traversing or forming inside a 24 h warning line in China from 1971 to 2010 are 0.58 and 0.56,respectively(both are at a statistically significant level,aboveα=0.001).Furthermore,three simple indexes are used to compare with YTCPI.They all have very close relationships with it,with correlation coefficients 0.75,0.82 and 0.78.For economic loss and YTCPI,the correlation coefficient is 0.57 for 1994–2009.Information on principal ambient fields(sea surface temperature,850 and 500 hPa geopotential heights)during the previous winter is reflected in the relationship with YTCPI.Spatial and temporal variabilities of ambient fields are extracted through empirical orthogonal function(EOF)analysis.Spatial distributions of correlation coefficient between YTCPI and ambient fields match the EOF main mode.Correlation coefficients between YTCPI and the EOF time array for the three ambient fields are 0.46,0.44 and 0.4,respectively,all statistically significant,aboveα=0.01.The YTCPI has the overall potential to be an improved prediction tool.展开更多
基金National Natural Science Foundation of China(40730948)National Grand Fundamental Research 973 Program of China(2009CB421504)
文摘Landfalling tropical cyclones(LTCs)include those TCs approaching the land and moving across the coast.Structure and intensity change for LTCs include change of the eye wall,spiral rain band,mesoscale vortices,low-layer shear lines and tornadoes in the envelope region of TC,pre-TC squall lines,remote rain bands,core region intensity and extratropical transition(ET)processes,etc.Structure and intensity change of TC are mainly affected by three aspects,namely,environmental effects,inner core dynamics and underlying surface forcing.Structure and intensity change of coastal TCs will be especially affected by seaboard topography,oceanic stratification above the continental shelf and cold dry continental airflow,etc.Rapid changes of TC intensity,including rapid intensification and sudden weakening and dissipation,are the small probability events which are in lack of effective forecasting techniques up to now.Diagnostic analysis and mechanism study will help improve the understanding and prediction of the rapid change phenomena in TCs.
基金supported by the Foundation of Shanghai Typhoon Institute of China Meteorological Administration (Grant No. 2008ST02)the National Basic Research Program of China (Grant No. 2009CB421500)
文摘Conditional (CNOP) obtained by nonlinear optimal perturbation the ensemble-based calculation method is employed to find possible sensitive areas for improving 48-h or more than 48-h tropical cyclone (TC) track predictions in several cases affecting China in 2007. These sensitive areas are examined by observing system simulation experiments (OSSEs). Results show that these sensitive areas improve TC track predictions for 48 h or more to different extents. Further analysis is performed to determine the distribution characteristics of sensitive areas in these cases. Results show that areas south of Luzon and over surrounding oceans are significant for 48-h or more than 48-h TC track predictions, especially 60-h to 72-h track predictions. Areas over oceans north or east to Taiwan Island seem to be secondary sensitive for 48-h or more than 48-h TC track predictions.
基金funded by the Na-tional Natural Science Foundation of China[grant number 42005117]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDB40030205]the Key Special Project for the Introducing Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangdong)[grant number GML2019ZD0601]。
文摘The monthly prediction skill for tropical cyclone(TC)activity in the South China Sea(SCS)during the typhoon season(July to November)was evaluated using the FGOALS-f2 ensemble prediction system.Specifically,the prediction skill of the system at a 10-day lead time for monthly TC activity is given based on 35-year(1981–2015)hindcasts with 24 ensemble members.The results show that FGOALS-f2 can capture the climatology of TC track densities in each month,but there is a delay in the monthly southward movement in the area of high track densities of TCs.The temporal correlation coefficient of TC frequency fluctuates across the different months,among which the highest appears in October(0.59)and the lowest in August(0.30).The rank correlation coefficients of TC track densities are relatively higher(R>0.6)in July,September,and November,while those in August and October are relatively lower(R within 0.2 to 0.6).For real-time prediction of TCs in 2020(July to November),FGOALS-f2 demonstrates a skillful probabilistic prediction of TC genesis and movement.Besides,the system successfully forecasts the correct sign of monthly anomalies of TC frequency and accumulated cyclone energy for 2020(July to November)in the SCS.
基金supported by the National Natural Science Foundation of China under the grant number of 41275049the open project of Laboratory of Physical Oceanography, Ocean University of China
文摘Around 30 October 2012, Hurricane Sandy made landfall along the New Jersey shoreline after its completion of extratropical transition and transformation into an extratropical cyclone. The strong gale induced a catastrophic storm surge, and caused 72 death and damage of more than $50 billion. In this paper, the evolutionary process and spatial structure of the Hurricane Sandy during its extratropical transition were investigated by using Weather Research and Forecasting (WRF) version 3.3.1 modeling resuits and National Center for Environmental Prediction (NCEP) Coupled Forecast System model version 2 reanalysis datasets (CFSv2). It is found that during the upper-level trough interaction on 29 October, Sandy gradually fused with a pre-existing mid-latitude low-pressure system, and finished the re-intensification. WRF modeling results showed that the second peak occurred mainly due to the enhanced vertical motion, reduced vertical wind shear as well as the supplement of potential vorticity resulting from trough interaction over the southeast of Great Lakes. The cold continental air from the back of trough was encircled within the warm core system cyclonically, forming the characteristic of warm seclusion.
基金supported by the National Science & Technology Pillar Program during the 11th Five-Year Plan Period(Grant No.2007BAC29B05)the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q03-3)the National Natural Science Foundation of China(Grant No.41001021)
文摘A new composite index called the yearly tropical cyclone potential impact(YTCPI)is introduced.The relationship between YTCPI and activities of tropical cyclones(TCs)in China,disaster loss,and main ambient fields are investigated to show the potential of YTCPI as a new tool for short-term climate prediction of TCs.YTCPI can indicate TC activity and potential disaster loss.As correlation coefficients between YTCPI and frequency of landfalling TCs,the frequency of TCs traversing or forming inside a 24 h warning line in China from 1971 to 2010 are 0.58 and 0.56,respectively(both are at a statistically significant level,aboveα=0.001).Furthermore,three simple indexes are used to compare with YTCPI.They all have very close relationships with it,with correlation coefficients 0.75,0.82 and 0.78.For economic loss and YTCPI,the correlation coefficient is 0.57 for 1994–2009.Information on principal ambient fields(sea surface temperature,850 and 500 hPa geopotential heights)during the previous winter is reflected in the relationship with YTCPI.Spatial and temporal variabilities of ambient fields are extracted through empirical orthogonal function(EOF)analysis.Spatial distributions of correlation coefficient between YTCPI and ambient fields match the EOF main mode.Correlation coefficients between YTCPI and the EOF time array for the three ambient fields are 0.46,0.44 and 0.4,respectively,all statistically significant,aboveα=0.01.The YTCPI has the overall potential to be an improved prediction tool.