Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co...Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.展开更多
Two multicapillary coluumns(SE 30 and Carbowax 20M)were used for high speed GC separation of positional isomers of industrial chemicals The performances of the two multicapillary columns were also evaluated,such a...Two multicapillary coluumns(SE 30 and Carbowax 20M)were used for high speed GC separation of positional isomers of industrial chemicals The performances of the two multicapillary columns were also evaluated,such as the effects of carrier velocity,column temperature and sample capacity Two typical explosive isomers(DNT and TNT)were well separated on SE 30 multicapillary column,while some important chemicals(e g xylenes,xylenols)were separated on Carbowax 20M multicapillary column at high speed The multimulticapillary column shows the feature of fast analysis,relatively lower column temperature and larger sample capacity展开更多
To investigate the conditions under which acoustic resonances occur, staggered arrays of closely spaced rigid tubes were tested in a wind tunnel under various flow velocities. The author investigated the Strouhal numb...To investigate the conditions under which acoustic resonances occur, staggered arrays of closely spaced rigid tubes were tested in a wind tunnel under various flow velocities. The author investigated the Strouhal numbers at which flow periodicities occur, the relation between these Strouhal numbers and those at which acoustic resonances occur, and the effects of Reynolds number and longitudinal tube spacings on the occurrence of acoustic resonance. This investigation showed the following: (1) Acoustic resonance can be produced at a frequency well removed from that of vortex shedding. The results also show evidence of vortex shedding and acoustic resonance existing simultaneously but at different frequencies. (2) Acoustic resonance behavior is consistent with that of a self-excited system. (3) A new model of this phenomenon provides an improved procedure for avoiding acoustic resonances in closely spaced tube banks.展开更多
Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability ...Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.展开更多
Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent hig...Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent high temperature resistance. Though these alloys show reasonable weldability characteristics, the joint properties are greatly influenced by the welding processes. Weld thermal cycle of the processes will control the weld metal solidification and subsequent phase transformation and resultant microstructure. The welded joints of Ti-6Al-4V alloy were fabricated by gas tungsten arc welding (GTAW), laser beam welding (LBW) and electron beam welding (EBW) processes. The joints fabricated by EBW process exhibit higher strength compared with the GTAW and LBW joints; but the joints by GTAW process exhibit higher impact toughness compared with the LBW and EBW joints. The resultant tensile and impact properties of the welded joints were correlated with the weld metal microstructures.展开更多
The monitor is composed of a pair of electrodes,a single stage of microchannel plate,a phosphor screen,a CCD camera and a PC computer,To obtain a good uniform collecting field,forming electrodes system is used instead...The monitor is composed of a pair of electrodes,a single stage of microchannel plate,a phosphor screen,a CCD camera and a PC computer,To obtain a good uniform collecting field,forming electrodes system is used instead of that with a resistive divider,The readout system is performed by the phosphor screen and the CCD camera because the spatial resolution is not limited by the mechanical structure like the anode strip type and such video display system is very useful for beam studies and operation of the 40MeV linac,Besides,the design and test results are described in detail.展开更多
The purpose of this study is to forecast the profitable oil and gas reservoir,which is the key of finding hydrocarbon,based on the conception of special geologic bodies.With the guiding methodology of the research thi...The purpose of this study is to forecast the profitable oil and gas reservoir,which is the key of finding hydrocarbon,based on the conception of special geologic bodies.With the guiding methodology of the research thinking of integration of point-line-surface by using the methods and techniques of logging,seismic,seismic attribute,and logging constrained inversion in 3D data volume,the special geologic bodies of Member 3 of Dongying Formation in Littoral Slope Zone of Qikou Sag,which has important hydrocarbon exploration potential,are recognized and described under the constraint of sequence stratigraphic framework.As a result,the developed scale,geometric shape and space distribution feature of the special geologic bodies are forecasted;the inner structure and sequence structure patterns of the geologic bodies are also ascertained.From the lowstand system tract (LST) and lacustrine expanding system tract (EST) to the highstand system tract (HST),the geologic bodies have evolved from relative centralization of lake basin reducing period to three relative dispersive isolated parts of broad lake basin period.According to the relevance and regularity of the development of geologic bodies,the conclusions can be obtained that three types of potential profitable reservoir traps,including the lithologic lens traps,lithologic updip pinchout traps and structural-lithologic composite traps,are forecasted.In addition,scientific basis for further hydrocarbon exploration in new area (few-well area and no-well area) is offered in the guidance of sequence stratigraphic model.展开更多
The triatomic and tetratomic gas molecule adsorption effects on the electrical conductivity of graphene areinvestigated by the tight-binding model,Green’s function method,and coherent potential approximation.We find ...The triatomic and tetratomic gas molecule adsorption effects on the electrical conductivity of graphene areinvestigated by the tight-binding model,Green’s function method,and coherent potential approximation.We find thatthe electrical conductivity of graphene sheet is sensitive to the adsorption of these gases.展开更多
A nanocomposite electrocatalyst was prepared with the method of cluster beam deposition of palladium nanoparticle thin lms on carbon nanoparticle supporting layers and used as sensitive nonenzyme hydrogen peroxide sen...A nanocomposite electrocatalyst was prepared with the method of cluster beam deposition of palladium nanoparticle thin lms on carbon nanoparticle supporting layers and used as sensitive nonenzyme hydrogen peroxide sensors. An enhancement on the electrocatalytic activity of the palladium nanoparticles toward H2O2 reduction was observed, which was related to the coverage of the carbon nanoparticles. With one monolayer of carbon nanoparticles, the H2O2 detection sensitivity reached the maximum, which was more than twice of that of the pure Pd nanoparticles.展开更多
The tendency for air column resonance generation in structures with a constant volume behind a tube array like that of an exhaust gas economizer has been reported, but many points remain unclear with respect to the me...The tendency for air column resonance generation in structures with a constant volume behind a tube array like that of an exhaust gas economizer has been reported, but many points remain unclear with respect to the mechanism and conditions that generate acoustical resonance. When acoustical resonance is generated, in reality, prevention and suppression measures are implemented by inserting a baffle plate into the ducts through a process of trial and error. The purpose of this study is to clarify the mechanism of generation of acoustical resonance, and to establish an appropriate measure to prevent such resonance. Noise generated in an exhaust gas economizer was correlated with the flow inside the tube array and experimentally analyzed, and the mechanism for resonance generation was considered. In addition, the effectiveness of a baffle plate positioned in order to prevent resonance was investigated. We have successfully employed a single baffle plate to suppress resonance.展开更多
AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects o...AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects of three welding processes on the tensile, fatigue and corrosion behaviour were studied. Microstructure analysis was carried out using optical and electron microscopes. The results show that the FSW joints exhibit superior tensile and fatigue properties compared to EBW and GTAW joints. It is also found that the friction stir welds show lower corrosion resistance than EB and GTA welds. This is mainly due to the presence of finer grains and uniform distribution of strengthening precipitates in the weld metal of FSW joints.展开更多
A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-C...A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.展开更多
文摘Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.
文摘Two multicapillary coluumns(SE 30 and Carbowax 20M)were used for high speed GC separation of positional isomers of industrial chemicals The performances of the two multicapillary columns were also evaluated,such as the effects of carrier velocity,column temperature and sample capacity Two typical explosive isomers(DNT and TNT)were well separated on SE 30 multicapillary column,while some important chemicals(e g xylenes,xylenols)were separated on Carbowax 20M multicapillary column at high speed The multimulticapillary column shows the feature of fast analysis,relatively lower column temperature and larger sample capacity
文摘To investigate the conditions under which acoustic resonances occur, staggered arrays of closely spaced rigid tubes were tested in a wind tunnel under various flow velocities. The author investigated the Strouhal numbers at which flow periodicities occur, the relation between these Strouhal numbers and those at which acoustic resonances occur, and the effects of Reynolds number and longitudinal tube spacings on the occurrence of acoustic resonance. This investigation showed the following: (1) Acoustic resonance can be produced at a frequency well removed from that of vortex shedding. The results also show evidence of vortex shedding and acoustic resonance existing simultaneously but at different frequencies. (2) Acoustic resonance behavior is consistent with that of a self-excited system. (3) A new model of this phenomenon provides an improved procedure for avoiding acoustic resonances in closely spaced tube banks.
基金Project(2021MD703848) supported by the China Postdoctoral Science FoundationProjects(52174229, 52174230)supported by the National Natural Science Foundation of China+1 种基金Project(2021-KF-23-04) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2020CXNL10) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.
基金the Combat Vehicle Research and Development Establishment(CVRDE),Avadi,Chennai,Government of India for providing financial support to carry out this investigation through a Contract Acquisition for Research Services project,No.CVRDE/MMG/09-10/0043/CARS
文摘Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent high temperature resistance. Though these alloys show reasonable weldability characteristics, the joint properties are greatly influenced by the welding processes. Weld thermal cycle of the processes will control the weld metal solidification and subsequent phase transformation and resultant microstructure. The welded joints of Ti-6Al-4V alloy were fabricated by gas tungsten arc welding (GTAW), laser beam welding (LBW) and electron beam welding (EBW) processes. The joints fabricated by EBW process exhibit higher strength compared with the GTAW and LBW joints; but the joints by GTAW process exhibit higher impact toughness compared with the LBW and EBW joints. The resultant tensile and impact properties of the welded joints were correlated with the weld metal microstructures.
文摘The monitor is composed of a pair of electrodes,a single stage of microchannel plate,a phosphor screen,a CCD camera and a PC computer,To obtain a good uniform collecting field,forming electrodes system is used instead of that with a resistive divider,The readout system is performed by the phosphor screen and the CCD camera because the spatial resolution is not limited by the mechanical structure like the anode strip type and such video display system is very useful for beam studies and operation of the 40MeV linac,Besides,the design and test results are described in detail.
基金Project(40872077) supported by the National Natural Science Foundation of ChinaProject(2008CDA098) supported by the Key Natural Science Foundation of Hubei Province,China+1 种基金Project(TPR-2010-01) supported by the Open Project Foundation of Key Laboratory of Tectonics and Petroleum Resources,Ministry of Education,Chinasupported by the research institute exploration and development,PetroChina Dagang Oilfield Company
文摘The purpose of this study is to forecast the profitable oil and gas reservoir,which is the key of finding hydrocarbon,based on the conception of special geologic bodies.With the guiding methodology of the research thinking of integration of point-line-surface by using the methods and techniques of logging,seismic,seismic attribute,and logging constrained inversion in 3D data volume,the special geologic bodies of Member 3 of Dongying Formation in Littoral Slope Zone of Qikou Sag,which has important hydrocarbon exploration potential,are recognized and described under the constraint of sequence stratigraphic framework.As a result,the developed scale,geometric shape and space distribution feature of the special geologic bodies are forecasted;the inner structure and sequence structure patterns of the geologic bodies are also ascertained.From the lowstand system tract (LST) and lacustrine expanding system tract (EST) to the highstand system tract (HST),the geologic bodies have evolved from relative centralization of lake basin reducing period to three relative dispersive isolated parts of broad lake basin period.According to the relevance and regularity of the development of geologic bodies,the conclusions can be obtained that three types of potential profitable reservoir traps,including the lithologic lens traps,lithologic updip pinchout traps and structural-lithologic composite traps,are forecasted.In addition,scientific basis for further hydrocarbon exploration in new area (few-well area and no-well area) is offered in the guidance of sequence stratigraphic model.
文摘The triatomic and tetratomic gas molecule adsorption effects on the electrical conductivity of graphene areinvestigated by the tight-binding model,Green’s function method,and coherent potential approximation.We find thatthe electrical conductivity of graphene sheet is sensitive to the adsorption of these gases.
基金supported by the National Natural Science Foundation of China(No.11627806 and No.61301015)supported by a Project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘A nanocomposite electrocatalyst was prepared with the method of cluster beam deposition of palladium nanoparticle thin lms on carbon nanoparticle supporting layers and used as sensitive nonenzyme hydrogen peroxide sensors. An enhancement on the electrocatalytic activity of the palladium nanoparticles toward H2O2 reduction was observed, which was related to the coverage of the carbon nanoparticles. With one monolayer of carbon nanoparticles, the H2O2 detection sensitivity reached the maximum, which was more than twice of that of the pure Pd nanoparticles.
文摘The tendency for air column resonance generation in structures with a constant volume behind a tube array like that of an exhaust gas economizer has been reported, but many points remain unclear with respect to the mechanism and conditions that generate acoustical resonance. When acoustical resonance is generated, in reality, prevention and suppression measures are implemented by inserting a baffle plate into the ducts through a process of trial and error. The purpose of this study is to clarify the mechanism of generation of acoustical resonance, and to establish an appropriate measure to prevent such resonance. Noise generated in an exhaust gas economizer was correlated with the flow inside the tube array and experimentally analyzed, and the mechanism for resonance generation was considered. In addition, the effectiveness of a baffle plate positioned in order to prevent resonance was investigated. We have successfully employed a single baffle plate to suppress resonance.
基金Project DRAO/08/1061356/M1 supported by Aeronautical Research & Development Board (ARDB),New Delhi,India
文摘AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects of three welding processes on the tensile, fatigue and corrosion behaviour were studied. Microstructure analysis was carried out using optical and electron microscopes. The results show that the FSW joints exhibit superior tensile and fatigue properties compared to EBW and GTAW joints. It is also found that the friction stir welds show lower corrosion resistance than EB and GTA welds. This is mainly due to the presence of finer grains and uniform distribution of strengthening precipitates in the weld metal of FSW joints.
基金Project(2013CB228005) supported by the National Program on Key Fundamental Research Project of ChinaProject(14ZB0047) supported by the Department of Education of Sichuan Province,China
文摘A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.