To develop a new technique for separating gas mixtures via hydrate formation,a set of medium-sized experimental bubble column reactor equipment was constructed.On the basis of the structure parameters of the ex- perim...To develop a new technique for separating gas mixtures via hydrate formation,a set of medium-sized experimental bubble column reactor equipment was constructed.On the basis of the structure parameters of the ex- perimental bubble column reactor,assuming that the liquid phase was in the axial dispersion regime and the gas phase was in the plug flow regime,in the presence of hydrate promoter tetrahydrofuran(THF),the rate of hydrogen enrichment for CH4+H2 gas mixtures at different operational conditions(such as temperature,pressure,concentra- tion of gas components,gas flow rate,liquid flow rate)were simulated.The heat product of the hydrate reaction and its axial distribution under different operational conditions were also calculated.The results would be helpful not only to setting and optimizing operation conditions and design of multi-refrigeration equipment,but also to hydrate separation technique industrialization.展开更多
In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reporte...In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reported. Attempts to simulate these reduction processes using shrinking core model, one of the common models used for such studies, have under predicted the reduction rates. This may be owing to the fact that the homogeneous reaction in the gas phase is not being considered. If the reaction temperatures are above 1,000 K, generally so for many reduction processes, the homogeneous gas reaction rates are expected to be high enough that local equilibrium in the gas phase can be assumed. In the present study, reduction of wustite in a C-O-H-N gas mixture has been modeled using shrinking core model considering the water gas shift equilibrium in the gas while it diffuses through the product layer.展开更多
Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent ...Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.展开更多
The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsome...The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsometry for water vapor adsorption and gas permeation of binary mixture of helium and H2O The adsorption behaviors on the silica membrane comply with the first-order Langmuir isotherm. The investigation demonstrates that helium flux through the silica membrane decreases dramatically in presence of H20 molecules. The transport of gas molecules through such small pores is believed not to be continuous any more, whereas it is reasonably assumed that the gas molecules hop from one occupied site to another unoccupied one under the potential gradient. When the coverage of H20 molecules on the silica surface increases, the dramatic decrease of helium flux could be related to percolation effect, where the adsorbed H20 molecules on the silica surface block the hopping of helium molecules.展开更多
Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. Th...Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. The testing media consisted of silica sand particles with diameters of 150-250 μm and 250-380 μm. Hydrate was formed (as in nature) in salt water that occupies the interstitial space of the partially water-saturated silica sand bed. The experiments demonstrate that the rate of hydrate formation is a function of particle diameter, gas source, water salinity, and thermodynamic conditions. The initiation time of hydrate formation was very short and pressure decreased rapidly in the initial stage. The process of mixed gas hydrate formation can be divided into three stages for each type of sediment. Sand particle diameter and water salinity also can influence the formation process of hydrate. The conversion rate of water to hydrate was different under varying thermodynamic conditions, although the formation processes were similar. The conversion rate of methane hydrate in the 250-380 μm sediment was greater than that in the 150-250μm sediment. However, the sediment grain size has no significant influence on the conversion rate of mixed gas hydrate.展开更多
基金Supported by the National Natural Science Foundation of China (No.20490207).
文摘To develop a new technique for separating gas mixtures via hydrate formation,a set of medium-sized experimental bubble column reactor equipment was constructed.On the basis of the structure parameters of the ex- perimental bubble column reactor,assuming that the liquid phase was in the axial dispersion regime and the gas phase was in the plug flow regime,in the presence of hydrate promoter tetrahydrofuran(THF),the rate of hydrogen enrichment for CH4+H2 gas mixtures at different operational conditions(such as temperature,pressure,concentra- tion of gas components,gas flow rate,liquid flow rate)were simulated.The heat product of the hydrate reaction and its axial distribution under different operational conditions were also calculated.The results would be helpful not only to setting and optimizing operation conditions and design of multi-refrigeration equipment,but also to hydrate separation technique industrialization.
文摘In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reported. Attempts to simulate these reduction processes using shrinking core model, one of the common models used for such studies, have under predicted the reduction rates. This may be owing to the fact that the homogeneous reaction in the gas phase is not being considered. If the reaction temperatures are above 1,000 K, generally so for many reduction processes, the homogeneous gas reaction rates are expected to be high enough that local equilibrium in the gas phase can be assumed. In the present study, reduction of wustite in a C-O-H-N gas mixture has been modeled using shrinking core model considering the water gas shift equilibrium in the gas while it diffuses through the product layer.
基金the Iran Nanotechnology Initiative Council for the financial and other supports
文摘Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.
基金This work was supported by the Fhndamental Research Funds for the Central Universities (No.XDJK2015C002) and the National Natural Science Foundation of China (No.51402243). Special thanks are given to Prof. H. J. M Bouwmeester and Dr. N.E. Benes from University of Twente for fruitful discussion.
文摘The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsometry for water vapor adsorption and gas permeation of binary mixture of helium and H2O The adsorption behaviors on the silica membrane comply with the first-order Langmuir isotherm. The investigation demonstrates that helium flux through the silica membrane decreases dramatically in presence of H20 molecules. The transport of gas molecules through such small pores is believed not to be continuous any more, whereas it is reasonably assumed that the gas molecules hop from one occupied site to another unoccupied one under the potential gradient. When the coverage of H20 molecules on the silica surface increases, the dramatic decrease of helium flux could be related to percolation effect, where the adsorbed H20 molecules on the silica surface block the hopping of helium molecules.
基金provided by the NSFC-Guangdong Joint Science Foundation of China (Grant No. U0933004)the National Basic Research Program of China (Grant No. 2009CB219504)+3 种基金the National Natural Science Foundation of China (Grant No. 51206169)the National Oceanic Geological Special Projects (Grant No. GHZ2012006003)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KGZD-EW-3)the National High Technology Research and Development Program of China (Grant No. 2012AA061403-03)
文摘Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. The testing media consisted of silica sand particles with diameters of 150-250 μm and 250-380 μm. Hydrate was formed (as in nature) in salt water that occupies the interstitial space of the partially water-saturated silica sand bed. The experiments demonstrate that the rate of hydrate formation is a function of particle diameter, gas source, water salinity, and thermodynamic conditions. The initiation time of hydrate formation was very short and pressure decreased rapidly in the initial stage. The process of mixed gas hydrate formation can be divided into three stages for each type of sediment. Sand particle diameter and water salinity also can influence the formation process of hydrate. The conversion rate of water to hydrate was different under varying thermodynamic conditions, although the formation processes were similar. The conversion rate of methane hydrate in the 250-380 μm sediment was greater than that in the 150-250μm sediment. However, the sediment grain size has no significant influence on the conversion rate of mixed gas hydrate.