As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to ...As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.展开更多
In order to identify potential wood substitutes for the production of energy by gasification, binary blends (wood/miscanthus, miscanthus/straw and wood/straw) and ternary blends (wood, miscanthus and organic residu...In order to identify potential wood substitutes for the production of energy by gasification, binary blends (wood/miscanthus, miscanthus/straw and wood/straw) and ternary blends (wood, miscanthus and organic residue) were systematic tested in a laboratory bubbling fluidized bed gasification system. The results of experiments were compared with results of wood gasification. Of the binary blends, wood and miscanthus exhibited great potential as a wood substitute in fluidized bed gasification in terms of process stability and product gas quality. Adding 10 wt. % of organic residues to form ternary blends further improved the product gas quality. Gasification of fuels blended with straw tended to agglomerate in the fluidized bed because of straw's low ash melting temperature. This can be counteracted by adding Ca(OH)2 to fuels. Nonetheless, fuels blended with straw with higher percentages of Ca(OH)2 need further study to establish the optimal additive ratio.展开更多
基金the Tarbiat Modares University (TMU), the Iran Mineral Processing Research Center (IMPRC) and the IMIDRO for the technical assistance and financial support
文摘As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.
文摘In order to identify potential wood substitutes for the production of energy by gasification, binary blends (wood/miscanthus, miscanthus/straw and wood/straw) and ternary blends (wood, miscanthus and organic residue) were systematic tested in a laboratory bubbling fluidized bed gasification system. The results of experiments were compared with results of wood gasification. Of the binary blends, wood and miscanthus exhibited great potential as a wood substitute in fluidized bed gasification in terms of process stability and product gas quality. Adding 10 wt. % of organic residues to form ternary blends further improved the product gas quality. Gasification of fuels blended with straw tended to agglomerate in the fluidized bed because of straw's low ash melting temperature. This can be counteracted by adding Ca(OH)2 to fuels. Nonetheless, fuels blended with straw with higher percentages of Ca(OH)2 need further study to establish the optimal additive ratio.