The flotation process is a particle-hydrophobic surface-based separation technique. To improve the essential flotation steps of collision and attachment probabilities, and reduce the step of detachment probabilities b...The flotation process is a particle-hydrophobic surface-based separation technique. To improve the essential flotation steps of collision and attachment probabilities, and reduce the step of detachment probabilities between air bubbles and hydrophobic particles, a selectively designed cavitation venturi tube combined with a static mixer can be used to generate very high numbers of pico and nano bubbles in a flotation column. Fully embraced by those high numbers of tiny bubbles, hydrophobic particles readily attract the tiny bubbles to their surfaces. The results of column flotation of Pittsburgh No. 8 seam coal are obtained in a 5.08 cm ID and 162 cm height flotation column equipped with a static mixer and cavitation venturi tube, using kerosene as collector and MIBC as frother. Design of the experimental procedure is combined with a statistical two-stepwise analysis to determine the optimal operating conditions for maximum recovery at a specified grade. The effect of independent variables on the responses has been explained. Combustible material recovery of 85–90% at clean coal product of 10–11% ash is obtained from feed of 29.6% ash, with a much-reduced amount of frother and collector than that used in conventional column flotation. The column flotation process utilizing pico and nano bubbles can also be extended to the lower limit and upper limit of particle size ranges, minus 75 lm and 300–600 lm, respectively, for better recovery.展开更多
The present study summarizes the results of macro-and micro-mixing characteristics in an airlift internal loop reactor with low aspect ratio(H/D≤5) using the electrolytic tracer response technique and the method of p...The present study summarizes the results of macro-and micro-mixing characteristics in an airlift internal loop reactor with low aspect ratio(H/D≤5) using the electrolytic tracer response technique and the method of parallel competing reactions respectively. The micro-mixing has never been investigated in airlift loop reactors. The dual-tip electrical conductivity probe technique is used for measurement of local bubble behavior in the reactor. The effects of several operating parameters and geometric variables are investigated. It is found that the increase in superficial gas velocity corresponds to the increase in energy input, liquid circulation velocity and shear rate, decreasing the macro-mixing time and segregation index. Moreover, it is shown that top clearance and draft diameter affect flow resistance. However, the bubble redistribution with a screen mesh on the perforated plate distributor for macro-mixing is insignificant. The top region with a high energy dissipation rate is a suitable location for feeding reactants. The analysis of present experimental data provides a valuable insight into the interaction between gas and liquid phases for mixing and improves the understanding of intrinsic roles of hydrodynamics upon the reactor design and operating parameter selection.展开更多
Bubble column reactors are multiphase contacting devices used in a wide variety of industrial application. Inrtevep S. A. is working on developing technologies to convert heavy and extra-heavy crude oil using this typ...Bubble column reactors are multiphase contacting devices used in a wide variety of industrial application. Inrtevep S. A. is working on developing technologies to convert heavy and extra-heavy crude oil using this type of reactors. Volumetric gas hold up, flow pattern, average gas bubble size, average interfacial area, RTD (residence time distribution), dispersion coefficient, Peclet number are important design parameters for a proper scale up of them. Several cold model experiments have been proposed to determine the previously mentioned parameters at atmospheric conditions, using a plexiglas bubble column reactor at pilot plant scale unit (12 cm diameter). It was also evaluated our own design of internal trays (plates) in the reactor. Air-tap water and air-light oil systems have been used. A wide operating condition range was applied, superficial gas velocity between 0.5-10 cm/s, liquid flowrate between 15-65 I/h. Generally speaking, working without internal trays was found that gas hold up increase along the reactor and it was possible to identify heterogeneous bubble, transition and turbulent flow pattern areas for the air-light oil system. Average gas bubble size increase along the reactor at bubble regime from 2-5 mm but at turbulent regime, stay oscillating between 1-3 mm. Average interfacial area increases exponentially with superficial gas velocity at any reactor height, till 1,412 m2/m3 for the air-light oil system but, at bubble flow regime, the average interfacial area is lower than 100 m2/m3, which negatively impact the reactor performance. Internal trays in the reactor always increase gas hold up at any condition or system used. Residence time distributions curves, Peclet numbers and dispersion coefficients founded, show that this reactor with this kind of design internal trays still tends to be a complete mixing reactor under the operating conditions used.展开更多
基金provided by West Virginia State Coal and Energy Research Bureau (CERB)the Department of Mining Engineering,West Virginia University
文摘The flotation process is a particle-hydrophobic surface-based separation technique. To improve the essential flotation steps of collision and attachment probabilities, and reduce the step of detachment probabilities between air bubbles and hydrophobic particles, a selectively designed cavitation venturi tube combined with a static mixer can be used to generate very high numbers of pico and nano bubbles in a flotation column. Fully embraced by those high numbers of tiny bubbles, hydrophobic particles readily attract the tiny bubbles to their surfaces. The results of column flotation of Pittsburgh No. 8 seam coal are obtained in a 5.08 cm ID and 162 cm height flotation column equipped with a static mixer and cavitation venturi tube, using kerosene as collector and MIBC as frother. Design of the experimental procedure is combined with a statistical two-stepwise analysis to determine the optimal operating conditions for maximum recovery at a specified grade. The effect of independent variables on the responses has been explained. Combustible material recovery of 85–90% at clean coal product of 10–11% ash is obtained from feed of 29.6% ash, with a much-reduced amount of frother and collector than that used in conventional column flotation. The column flotation process utilizing pico and nano bubbles can also be extended to the lower limit and upper limit of particle size ranges, minus 75 lm and 300–600 lm, respectively, for better recovery.
基金Supported by the National Basic Research Program of China(2012CB224806)the National Science Fund for Distinguished Young Scholars(21025627)+2 种基金the National Natural Science Foundation of China(21206166,20990224)the National High Technology Research and Development Program of China(2012AA03A606)Beijing Natural Science Foundation(2112038)
文摘The present study summarizes the results of macro-and micro-mixing characteristics in an airlift internal loop reactor with low aspect ratio(H/D≤5) using the electrolytic tracer response technique and the method of parallel competing reactions respectively. The micro-mixing has never been investigated in airlift loop reactors. The dual-tip electrical conductivity probe technique is used for measurement of local bubble behavior in the reactor. The effects of several operating parameters and geometric variables are investigated. It is found that the increase in superficial gas velocity corresponds to the increase in energy input, liquid circulation velocity and shear rate, decreasing the macro-mixing time and segregation index. Moreover, it is shown that top clearance and draft diameter affect flow resistance. However, the bubble redistribution with a screen mesh on the perforated plate distributor for macro-mixing is insignificant. The top region with a high energy dissipation rate is a suitable location for feeding reactants. The analysis of present experimental data provides a valuable insight into the interaction between gas and liquid phases for mixing and improves the understanding of intrinsic roles of hydrodynamics upon the reactor design and operating parameter selection.
文摘Bubble column reactors are multiphase contacting devices used in a wide variety of industrial application. Inrtevep S. A. is working on developing technologies to convert heavy and extra-heavy crude oil using this type of reactors. Volumetric gas hold up, flow pattern, average gas bubble size, average interfacial area, RTD (residence time distribution), dispersion coefficient, Peclet number are important design parameters for a proper scale up of them. Several cold model experiments have been proposed to determine the previously mentioned parameters at atmospheric conditions, using a plexiglas bubble column reactor at pilot plant scale unit (12 cm diameter). It was also evaluated our own design of internal trays (plates) in the reactor. Air-tap water and air-light oil systems have been used. A wide operating condition range was applied, superficial gas velocity between 0.5-10 cm/s, liquid flowrate between 15-65 I/h. Generally speaking, working without internal trays was found that gas hold up increase along the reactor and it was possible to identify heterogeneous bubble, transition and turbulent flow pattern areas for the air-light oil system. Average gas bubble size increase along the reactor at bubble regime from 2-5 mm but at turbulent regime, stay oscillating between 1-3 mm. Average interfacial area increases exponentially with superficial gas velocity at any reactor height, till 1,412 m2/m3 for the air-light oil system but, at bubble flow regime, the average interfacial area is lower than 100 m2/m3, which negatively impact the reactor performance. Internal trays in the reactor always increase gas hold up at any condition or system used. Residence time distributions curves, Peclet numbers and dispersion coefficients founded, show that this reactor with this kind of design internal trays still tends to be a complete mixing reactor under the operating conditions used.