For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out res...For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.展开更多
The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simul...The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared.展开更多
A three-dimensional computational fluid dynamics (CFD) model for gas flow through a serrated valve tray was presented. The flow field, as well as the dry-pressure drop of the valve under the full-opening condition w...A three-dimensional computational fluid dynamics (CFD) model for gas flow through a serrated valve tray was presented. The flow field, as well as the dry-pressure drop of the valve under the full-opening condition was simulated based on the proposed model by using FLUENT 6.0 software. Compared with the values of dry-pressure dro.p in different turbulent models, the.simulated.results using RNG κ-ε model are in reasonable agreement with experimental data, indicating that RNG κ-ε model is suitable in simulating gas flow through the serrated valve tray. Then the CFD model combining RNG κ-ε model was used to study the three-dimensional gas flow through the considered serrated valve tray. The simulated results showed that various eddies existed on the serrated valve tray, and both the eddy and the non-eddy areas were nearly equal. The existence of addendum can decrease the eddy area caused by gas passing through the lateral outlet slots. The size of eddies can be reduced by optimizing the distance between valves.展开更多
In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational flu...In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.展开更多
The explosion flow field in five straight pipes with different diameters and one bending pipe selected from a domestic coal mine are studied by the method of numerical simulation. And the results show that,both in the...The explosion flow field in five straight pipes with different diameters and one bending pipe selected from a domestic coal mine are studied by the method of numerical simulation. And the results show that,both in the straight and bending pipes, the pressure wave and velocity wave are accelerated by the rising of reaction rate. As the explosion progressed, with the temperature reaching approximately 3000 K, only one pressure wave and one reaction rate wave were observed, while several velocity waves were found.The larger diameter presented the highest relative pressure as well as the largest velocity increase and subsequent decrease inside the tube. The bent pipes caused both turbulence and kinetic energy to increase, resulting in the acceleration of the reaction rate. The burning time was 7.4% shorter than the burning time observed for the straight pipe. Based on these results, designing one explosion resistance device, and in the practical engineering applications, it was to be proved to meet the security requirements fully.展开更多
The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disint...The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disintegration were ignored based on the dimensionless analysis,and the bubble size was assumed to be obedient to Rosin-Rammler distribution with a mean size of 0.6 mm.The results show that on reference operating condition,during the heating and agitation process,melt mixes well in the furnace,and the melt velocity increases with the increase of gas flux.Holding the melt for 30 min causes the max temperature in the bulk melt to increase to 60 K.After holding the heat,the agitation processing restarts,and it takes 10 min for the stratified melt to retrieve the homogeneous temperature field when the gas flux is 10 L/min,which shows deficient alloying and degassing in the melt.With the increase of gas flux from 10 to 20,30 and 40 L/min,the necessary recovery time decreases from 10 to 6,5 and 4 min gradually,which shows the improvement of the stirring efficiency.Depending on the processing purposes,for both good degassing performance and gas saving,proper operating strategy and parameters (gas flux,primarily) could be adjusted.展开更多
"U" and "U+I" type ventilation experiments were performed on a three-dimensional fully mechanized caving face simulation experimental platform. The distribution laws of the pressure field and gas field in the min..."U" and "U+I" type ventilation experiments were performed on a three-dimensional fully mechanized caving face simulation experimental platform. The distribution laws of the pressure field and gas field in the mine goal were obtained. Results show that the flow field in the goaf is generally asymmetric; the location of the gas accumulation area changes with ventilation parameters and can be used as an evaluation indicator to study the air leakage extent in the goal. Hence, drainage pipes buried in the goaf to intensively extract gas can be designed in such gas areas, which can give considerations in both improving gas drainage efficiency and reducing air leakage. By comparing the gas extraction effect of model experiments with that of on-site underground practices, the basic laws are commonly consistent according to comparative analysis. Thus the experimental results can be used to guide the application of underground gas prevent!o_n_and.control..展开更多
The international standard IEC 61400-12-1 Wind turbines--Part 12-1: Power performance measurements of electricity producing wind turbines" aims to provide a uniform methodology that will ensure consistency, accuracy...The international standard IEC 61400-12-1 Wind turbines--Part 12-1: Power performance measurements of electricity producing wind turbines" aims to provide a uniform methodology that will ensure consistency, accuracy and reproducibility in the measurement and analysis of power performance by wind turbines. Annex G of this standard provides a methodology for the appropriate arrangement of instruments on the meteorological mast to ensure accurate measurement. For cup anemometers it provides recommendations about their location relative to the mast so that the effect of mast and boom interference on their output may be minimised. These recommendations are given for both tubular masts and lattice masts. This paper compares the flow distortion predicted by the IEC standard and the results of a 3D CFD (computational fluid dynamics) simulation of a triangular lattice mast. Based on the results of wind tunnel and CFD simulation it was found that the flow distortion surrounding the lattice mast was overpredicted by the method suggested in appendix G oflEC61400-12-1. Using the CFD data it was possible to determine, for a range of flow directions and mast heights, the distance from the mast that anemometers would need to be in order to be outside the flow distortion field.展开更多
According to the law of conservation in the state of turbulent flow, the differential equation describing the airflow temperature distribution in drifting tunnel is derived, By theoretical analysis and field measureme...According to the law of conservation in the state of turbulent flow, the differential equation describing the airflow temperature distribution in drifting tunnel is derived, By theoretical analysis and field measurement of the airflow and thermal process in mine, theoretical analysis and systematic flow are developed. By PHONENICS program, the numerical simulation is processed, and the changing rule of airflow temperature with various parameters in drifting tunnel is derived. The airflow temperature in drifting tunnel decreases as the airflow velocity increases in a way of negative power exponent, and elevates linearly as the temperature of the incoming airflow elevates.展开更多
3D Euler double-fluid model was applied and three different feedstocks and reverts formations were simulated. By calculating and analyzing the state of gas and solid fluxion in absorber using three different methods o...3D Euler double-fluid model was applied and three different feedstocks and reverts formations were simulated. By calculating and analyzing the state of gas and solid fluxion in absorber using three different methods of the feedstocks and reverts in recirculating fluidized bed, described the behavior of gas and solid through the gas-phase velocity, turbulence intensity, gas-solid sliding velocity, and density of particles. The results show that the feedstocks and reverts enters into absorption tower through two symmetrical feedings and are mixed with flue gas. Based on the respective analysis of each model and the com- parison analysis of the three models, this paper drew conclusions. The turbulence intensity of absorption tower is high, gas-solid sliding speed is big, and granule concentration near the axis is high, which has advantages for desulfurization and im- proving the utilization rate of absorbent.展开更多
This paper performs a numerical simulation of three-dimensional flow field in a centrifugal compressor with long inlet and outlet pipes using CFX software.By arranging virtual probes at different positions in both inl...This paper performs a numerical simulation of three-dimensional flow field in a centrifugal compressor with long inlet and outlet pipes using CFX software.By arranging virtual probes at different positions in both inlet and outlet planes,the aerodynamic performance of the centrifugal compressor is measured and compared with each other.Then effects of measuring positions on measurement results are discussed.The results show that it will generate notable measuring errors of the pressure ratio and efficiency if the inlet total pressure is measured using a single-point probe.The inlet total pressure data can be accurate when they are measured using a 3-point rake.The outlet total pressure and total temperature data can not be accurate if they are respectively measured at one circumferential position even using a multi-point rake.Increasing tangential measuring positions at the outlet is effective to improve the test accuracy.When the outlet total pressure and total temperature are respectively measured at 3 tangential positions,the data can be almost accurate.展开更多
Large eddy simulation(LES)is used to calculate the in-cylinder turbulent flow field in a direct injection spark ignition(DISI)engine.The computations are carried out for three different maximum valve lifts(MVL)and thr...Large eddy simulation(LES)is used to calculate the in-cylinder turbulent flow field in a direct injection spark ignition(DISI)engine.The computations are carried out for three different maximum valve lifts(MVL)and throughout 100 consecutive engine cycles.The simulated results as well as corresponding particle image velocimetry(PIV)measurement database are analyzed by the proper orthogonal decomposition(POD)method.Through a new developed POD quadruple decomposition the instantaneous in-cylinder flow fields are decomposed into four parts,named mean field,coherent field,transition field and turbulent field,respectively.Then the in-cylinder turbulent flow characteristics and cycle-to-cycle variations(CCV)are studied separately upon the four part flow fields.Results indicate that each part exhibits its specific characteristics and has close connection with others.The mean part contains more than 50%of the total kinetic energy and the energy cascade phenomenon occurs among the four part fields;the coherent field part possesses the highest CCV level which dominates CCV of the bulk flow.In addition,it is observed that a change in MVL affects significantly the in-cylinder flow behavior including CCV,especially for the coherent part.Furthermore,the POD analysis demonstrates that at least 25 sample cycles for the mean velocity and 50 sample cycles for the RMS velocity are necessary for obtaining converged and correct results in CCV.展开更多
基金Projects(50974033,51104035)supported by the National Natural Science Foundation of China
文摘For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.
文摘The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y404052).
文摘A three-dimensional computational fluid dynamics (CFD) model for gas flow through a serrated valve tray was presented. The flow field, as well as the dry-pressure drop of the valve under the full-opening condition was simulated based on the proposed model by using FLUENT 6.0 software. Compared with the values of dry-pressure dro.p in different turbulent models, the.simulated.results using RNG κ-ε model are in reasonable agreement with experimental data, indicating that RNG κ-ε model is suitable in simulating gas flow through the serrated valve tray. Then the CFD model combining RNG κ-ε model was used to study the three-dimensional gas flow through the considered serrated valve tray. The simulated results showed that various eddies existed on the serrated valve tray, and both the eddy and the non-eddy areas were nearly equal. The existence of addendum can decrease the eddy area caused by gas passing through the lateral outlet slots. The size of eddies can be reduced by optimizing the distance between valves.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Simulation and Test of the Flow Field of Gas Atomization Nozzle (No. 1001-KFA19184)。
文摘In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.
基金supported by National Natural Science Foundation of China (No. 51174113)National Key Basic Research and Development Program (No. 2011CB201206)National Key Scientific Apparatus Development of Special Item (No. 2012YQ24012705)
文摘The explosion flow field in five straight pipes with different diameters and one bending pipe selected from a domestic coal mine are studied by the method of numerical simulation. And the results show that,both in the straight and bending pipes, the pressure wave and velocity wave are accelerated by the rising of reaction rate. As the explosion progressed, with the temperature reaching approximately 3000 K, only one pressure wave and one reaction rate wave were observed, while several velocity waves were found.The larger diameter presented the highest relative pressure as well as the largest velocity increase and subsequent decrease inside the tube. The bent pipes caused both turbulence and kinetic energy to increase, resulting in the acceleration of the reaction rate. The burning time was 7.4% shorter than the burning time observed for the straight pipe. Based on these results, designing one explosion resistance device, and in the practical engineering applications, it was to be proved to meet the security requirements fully.
基金Project(2008AA11A116) supported by the National High Technology Research and Development Program of China
文摘The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disintegration were ignored based on the dimensionless analysis,and the bubble size was assumed to be obedient to Rosin-Rammler distribution with a mean size of 0.6 mm.The results show that on reference operating condition,during the heating and agitation process,melt mixes well in the furnace,and the melt velocity increases with the increase of gas flux.Holding the melt for 30 min causes the max temperature in the bulk melt to increase to 60 K.After holding the heat,the agitation processing restarts,and it takes 10 min for the stratified melt to retrieve the homogeneous temperature field when the gas flux is 10 L/min,which shows deficient alloying and degassing in the melt.With the increase of gas flux from 10 to 20,30 and 40 L/min,the necessary recovery time decreases from 10 to 6,5 and 4 min gradually,which shows the improvement of the stirring efficiency.Depending on the processing purposes,for both good degassing performance and gas saving,proper operating strategy and parameters (gas flux,primarily) could be adjusted.
基金supported by the National Natural Science Foundation of China (Nos. 51174198 and 51304203)Supported by State Key Laboratory of Coal Resources and Safe Mining (No. SKLCRSM11X01)
文摘"U" and "U+I" type ventilation experiments were performed on a three-dimensional fully mechanized caving face simulation experimental platform. The distribution laws of the pressure field and gas field in the mine goal were obtained. Results show that the flow field in the goaf is generally asymmetric; the location of the gas accumulation area changes with ventilation parameters and can be used as an evaluation indicator to study the air leakage extent in the goal. Hence, drainage pipes buried in the goaf to intensively extract gas can be designed in such gas areas, which can give considerations in both improving gas drainage efficiency and reducing air leakage. By comparing the gas extraction effect of model experiments with that of on-site underground practices, the basic laws are commonly consistent according to comparative analysis. Thus the experimental results can be used to guide the application of underground gas prevent!o_n_and.control..
文摘The international standard IEC 61400-12-1 Wind turbines--Part 12-1: Power performance measurements of electricity producing wind turbines" aims to provide a uniform methodology that will ensure consistency, accuracy and reproducibility in the measurement and analysis of power performance by wind turbines. Annex G of this standard provides a methodology for the appropriate arrangement of instruments on the meteorological mast to ensure accurate measurement. For cup anemometers it provides recommendations about their location relative to the mast so that the effect of mast and boom interference on their output may be minimised. These recommendations are given for both tubular masts and lattice masts. This paper compares the flow distortion predicted by the IEC standard and the results of a 3D CFD (computational fluid dynamics) simulation of a triangular lattice mast. Based on the results of wind tunnel and CFD simulation it was found that the flow distortion surrounding the lattice mast was overpredicted by the method suggested in appendix G oflEC61400-12-1. Using the CFD data it was possible to determine, for a range of flow directions and mast heights, the distance from the mast that anemometers would need to be in order to be outside the flow distortion field.
文摘According to the law of conservation in the state of turbulent flow, the differential equation describing the airflow temperature distribution in drifting tunnel is derived, By theoretical analysis and field measurement of the airflow and thermal process in mine, theoretical analysis and systematic flow are developed. By PHONENICS program, the numerical simulation is processed, and the changing rule of airflow temperature with various parameters in drifting tunnel is derived. The airflow temperature in drifting tunnel decreases as the airflow velocity increases in a way of negative power exponent, and elevates linearly as the temperature of the incoming airflow elevates.
文摘3D Euler double-fluid model was applied and three different feedstocks and reverts formations were simulated. By calculating and analyzing the state of gas and solid fluxion in absorber using three different methods of the feedstocks and reverts in recirculating fluidized bed, described the behavior of gas and solid through the gas-phase velocity, turbulence intensity, gas-solid sliding velocity, and density of particles. The results show that the feedstocks and reverts enters into absorption tower through two symmetrical feedings and are mixed with flue gas. Based on the respective analysis of each model and the com- parison analysis of the three models, this paper drew conclusions. The turbulence intensity of absorption tower is high, gas-solid sliding speed is big, and granule concentration near the axis is high, which has advantages for desulfurization and im- proving the utilization rate of absorbent.
基金funded by Chinese Key Laboratory Fund,Grant No.9140C3310040705the National Natural Science Foundation of China,Grant No.50776004+1 种基金supported by the 111 Project,No.B07009973 Project,No.2007CB210103
文摘This paper performs a numerical simulation of three-dimensional flow field in a centrifugal compressor with long inlet and outlet pipes using CFX software.By arranging virtual probes at different positions in both inlet and outlet planes,the aerodynamic performance of the centrifugal compressor is measured and compared with each other.Then effects of measuring positions on measurement results are discussed.The results show that it will generate notable measuring errors of the pressure ratio and efficiency if the inlet total pressure is measured using a single-point probe.The inlet total pressure data can be accurate when they are measured using a 3-point rake.The outlet total pressure and total temperature data can not be accurate if they are respectively measured at one circumferential position even using a multi-point rake.Increasing tangential measuring positions at the outlet is effective to improve the test accuracy.When the outlet total pressure and total temperature are respectively measured at 3 tangential positions,the data can be almost accurate.
基金supported by the National Natural Science Foundation of China(Grant Nos.51176020 and 51376029)
文摘Large eddy simulation(LES)is used to calculate the in-cylinder turbulent flow field in a direct injection spark ignition(DISI)engine.The computations are carried out for three different maximum valve lifts(MVL)and throughout 100 consecutive engine cycles.The simulated results as well as corresponding particle image velocimetry(PIV)measurement database are analyzed by the proper orthogonal decomposition(POD)method.Through a new developed POD quadruple decomposition the instantaneous in-cylinder flow fields are decomposed into four parts,named mean field,coherent field,transition field and turbulent field,respectively.Then the in-cylinder turbulent flow characteristics and cycle-to-cycle variations(CCV)are studied separately upon the four part flow fields.Results indicate that each part exhibits its specific characteristics and has close connection with others.The mean part contains more than 50%of the total kinetic energy and the energy cascade phenomenon occurs among the four part fields;the coherent field part possesses the highest CCV level which dominates CCV of the bulk flow.In addition,it is observed that a change in MVL affects significantly the in-cylinder flow behavior including CCV,especially for the coherent part.Furthermore,the POD analysis demonstrates that at least 25 sample cycles for the mean velocity and 50 sample cycles for the RMS velocity are necessary for obtaining converged and correct results in CCV.