Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scal...Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scale of turbulent fluctuations.The relationship between the crossing-eddy time and the eddy lifetime was discussed,and the predicted distributions of radial,axial velocities of bubbles and gas holdup were also given. Compared with eddy lifetime(EL)model,the EBI model gives somewhat smaller axial velocity in the upper circulation region and larger velocity in the lower circulation region,causing that fewer bubbles reach the lower circulation region and gas holdup becomes higher in the upper circulation region.The predicted gas holdup by the EBI model approaches closer to the experimental data in the discharge stream region.展开更多
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in...According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.展开更多
The mechanically stirred internal loop airlift reactors equipped with or without static mixers are devised for intensification of gas-liquid mass transfer rate. The influences of superficial gas velocity, agitation o...The mechanically stirred internal loop airlift reactors equipped with or without static mixers are devised for intensification of gas-liquid mass transfer rate. The influences of superficial gas velocity, agitation or static mixers on gas hold-up, mixing time, liquid circulating velocity and volumetric mass transfer coefficient have been investigated with tap water and carboxymethyl cellulose (CMC) aqueous solution. The experimental results indicate that mechanical agitation is more efficacious than static mixer in highly viscous media for improving mass transfer in airlift reactors. The empirical correlation of volumetric mass transfer coefficient with apparent viscosity, and energy consumption for mechanical agitation and aeration is developed.展开更多
Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process i...Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process in the tank was calculated by tracer method.The results show that increasing the rotating speed or gas flow is conducive to a more uniform distribution of the gas phase and accelerates the mixing of the liquid phase.When the rotating speed exceeds 93 r/min,the relative power demand remains basically constant.The change in the inclination angle of the upper impeller has minimal effect on the gas phase distribution.When the inclination angle is 50°,the relative power demand reaches the maximum.An appropriate increase in the impeller distance from the bottom improves the gas holdup and gas phase distribution but increases the liquid phase mixing time.展开更多
A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The sl...A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively.展开更多
In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curv...In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curves, the bed density stability and the average bubble rise velocity Uaunder different agitation conditions. The results indicated that a lower bed pressure drop(without considering lower gas velocity in a fixed bed stage) and higher minimum fluidized velocity are achieved with increasing agitation speed.The height d(distance between the lower blades and air distribution plate) at which the agitation paddle was located had a considerable effect on the stability of the bed density at 9.36 cm/s < U < 10.70 cm/s. The higher the value of d, the better the stability, and the standard deviation of the bed density fluctuation r dropped to 0.0364 g/cm^3 at the ideal condition of d = 40 mm. The agitation speed also had a significant influence on the fluidization performance, and r was only 0.0286 g/cm^3 at an agitation speed of N = 75 r/min. The average bubble rise velocity decreased significantly with increasing agitation speed under the operating condition of 1.50 cm/s < U–U_(mf)< 3.50 cm/s. This shows that appropriate agitation contributes to a significant improvement in the fluidization quality in a fluidized bed, and enhances the separation performance of a fluidized bed.展开更多
基金Supported by the National Natural Science Foundation of China(20776121) the Scientific Fund of Hunan Provincial Education Department(07C765 07C744)
文摘Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scale of turbulent fluctuations.The relationship between the crossing-eddy time and the eddy lifetime was discussed,and the predicted distributions of radial,axial velocities of bubbles and gas holdup were also given. Compared with eddy lifetime(EL)model,the EBI model gives somewhat smaller axial velocity in the upper circulation region and larger velocity in the lower circulation region,causing that fewer bubbles reach the lower circulation region and gas holdup becomes higher in the upper circulation region.The predicted gas holdup by the EBI model approaches closer to the experimental data in the discharge stream region.
基金Project(51074027)supported by the National Natural Science Foundation of China
文摘According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.
文摘The mechanically stirred internal loop airlift reactors equipped with or without static mixers are devised for intensification of gas-liquid mass transfer rate. The influences of superficial gas velocity, agitation or static mixers on gas hold-up, mixing time, liquid circulating velocity and volumetric mass transfer coefficient have been investigated with tap water and carboxymethyl cellulose (CMC) aqueous solution. The experimental results indicate that mechanical agitation is more efficacious than static mixer in highly viscous media for improving mass transfer in airlift reactors. The empirical correlation of volumetric mass transfer coefficient with apparent viscosity, and energy consumption for mechanical agitation and aeration is developed.
基金financially supported by the Fundamental Research Funds for the Central Universities of Central South University,China(No.2020zzts515)。
文摘Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process in the tank was calculated by tracer method.The results show that increasing the rotating speed or gas flow is conducive to a more uniform distribution of the gas phase and accelerates the mixing of the liquid phase.When the rotating speed exceeds 93 r/min,the relative power demand remains basically constant.The change in the inclination angle of the upper impeller has minimal effect on the gas phase distribution.When the inclination angle is 50°,the relative power demand reaches the maximum.An appropriate increase in the impeller distance from the bottom improves the gas holdup and gas phase distribution but increases the liquid phase mixing time.
基金Project (2013B091300016) supported by the Department of Science and Technology of Guangdong Province,China
文摘A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively.
基金financial support by the National Key Programs for Fundamental Research and Development of China(No.2012CB214904)the National Natural Science Foundation of China(Nos.51174203,51134022)
文摘In order to study the effect of agitation on the characteristics of air dense medium fluidization, we designed and constructed an agitation device. Analyses were then conducted on the fluidization characteristics curves, the bed density stability and the average bubble rise velocity Uaunder different agitation conditions. The results indicated that a lower bed pressure drop(without considering lower gas velocity in a fixed bed stage) and higher minimum fluidized velocity are achieved with increasing agitation speed.The height d(distance between the lower blades and air distribution plate) at which the agitation paddle was located had a considerable effect on the stability of the bed density at 9.36 cm/s < U < 10.70 cm/s. The higher the value of d, the better the stability, and the standard deviation of the bed density fluctuation r dropped to 0.0364 g/cm^3 at the ideal condition of d = 40 mm. The agitation speed also had a significant influence on the fluidization performance, and r was only 0.0286 g/cm^3 at an agitation speed of N = 75 r/min. The average bubble rise velocity decreased significantly with increasing agitation speed under the operating condition of 1.50 cm/s < U–U_(mf)< 3.50 cm/s. This shows that appropriate agitation contributes to a significant improvement in the fluidization quality in a fluidized bed, and enhances the separation performance of a fluidized bed.