The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of r...The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.展开更多
A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, ...A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious.展开更多
In this study, the oxidation rates of sulfur dioxide (SO2) in sulphuric acid solution by ozone and oxygen were compared, and the oxidation mechanism of ozone on SO2 was investigated. The results showed that the oxid...In this study, the oxidation rates of sulfur dioxide (SO2) in sulphuric acid solution by ozone and oxygen were compared, and the oxidation mechanism of ozone on SO2 was investigated. The results showed that the oxidation-reduction potential of the acidic solution was enhanced, the transformation rate of sulfuric acid to sulphuric acid was increased and the absorption driving force was improved in the presence of ozone. By comparing the amount of sulfate ions measured in the experiments and the theoretical amount of sulfate ions calculated from the amount of ozone consumed in the reaction, it can be confirmed that oxygen free radicals from dissociation of ozone are reactive as an efficient oxidant and oxygen from ozone generator participates in the reaction with SO2. 0.602 mol of effective oxygen was introduced into the reaction by one mole of ozone in 10.15 rain at sulphuric acid concentration of 3% (by mass), SO2 concentration of 1.33% (by volume) and oxygen flow rate of 1.5 L.min^-1 from ozone generator.展开更多
Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is...Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.展开更多
Uniformity of air flow in extraction openings in exhaust air channels for manure gas exhaustion is determined by the distribution of pressure. The areas required in extraction vents and in extraction ducts are determi...Uniformity of air flow in extraction openings in exhaust air channels for manure gas exhaustion is determined by the distribution of pressure. The areas required in extraction vents and in extraction ducts are determined by the uniformity of air flow desired along the duct and by the loss of pressure that can be accepted. The area ratio between the vents and the cross section of the exhaust air duct will have a strong influence on both uniformity of flow and loss of pressure. The following ventilation properties were studied: Uniformity of air flow; Variations in static pressure along a duct; Air velocity at different distances from the vents. The area ratio should be about 1 for uniform exhaustion. The studies showed that the relative variation in air velocity is independent of the level of the ventilation rate. The uniformity of the exhaust distance is influenced in about the same way by the area ratio as the air velocity in the exhaust vents. Thus, it is important that the area ratio is not too high if a good exhaust function should be guaranteed. The studies also demonstrated that the uniformity of the exhaust distance is independent of the ventilation flow rate. The exhaust ventilation range is, maximally 0.3 m from the vents. The static friction coefficient was on average 0.80.展开更多
With the aim to find an absorbing liquid suitable for the gas cleaning system in the application of gasification unit in a remote area, three types of oil were tested using a bubble column and a wetted wall column. Ai...With the aim to find an absorbing liquid suitable for the gas cleaning system in the application of gasification unit in a remote area, three types of oil were tested using a bubble column and a wetted wall column. Air streams containing toluene vapour with flowrates of 13.6 mL-min1 or 27.6 mL.min^-1 were bubbled through a 50 mL static oil in a glass tube at a temperature of 30 ℃ or 60 ℃. In experiments using the wetted wall column, air streams containing toluene were contacted with a falling thin film ofoil on the outer wall of a column with a diameter of 6.4 cm and two different contacting heights of 60 cm or 80 cm. Toluene concentrations in the air stream were adjusted in the range of 700-3000 ppm corresponding to a typical tars concentration in the producer gas. The phase equilibrium of toluene was represented as values of 1/tl of 326, 220 and 182 respectively for lubrication oil, palm oil and sunflower oil (H is Henry's constant with the toluene concentrations in g.L^-1 for liquid phase and g.Nm^-3 for gas phase). From experiments using the bubble column, it was found that the overall mass transfer coefficient (Kc, a) was in the order of 10.3 cm3-min^-1 and the overall liquid phase mass transfer coefficient (KLa)was about 10.3 cm3.min^-1. Although lubrication oil had a slightly better absorption capacity than the other two tested oils, it had a lower mass trasfer coefficient than that of palm oil. All three proposed oils had a much better absorption capacity and absorption rate than that of water used conventionally as a scrubbing liquid in a small biomass gasification plant.展开更多
Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire t...Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire test tunnel. Both experimental measurements and numerical simulations are discussed. The numer- ical analysis was performed with the computational fluid dynamics software package ''FLUENT''. The results show that the experimental data agree with the simulation results. The results verify that Roberts' theory of burning is correct. They also prove that the air velocity is the key factor that determines the type of combustion. Also, it is shown that secondary disasters are unlikely for oxygen rich combustion with a limited fire load.展开更多
A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theor...A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer.展开更多
Low-concentration methane(LCM) has been one of the biggest difficulties in using coal mine methane.And previous studies found that premixed combustion in porous media is an effective method of low calorific gas utiliz...Low-concentration methane(LCM) has been one of the biggest difficulties in using coal mine methane.And previous studies found that premixed combustion in porous media is an effective method of low calorific gas utilization. This paper studied the combustion of LCM in a divergent porous medium burner(DPMB) by using computational fluid dynamics(CFD), and investigated the effect of gas initial temperature on combustion characteristic, the distribution of temperature and pollutant at different equivalence ratios in detail. Besides, the comparison of divergent and cylindrical burners was also performed in this paper. The results show that: the peak temperature in DPMB increases as the increasing of equivalence ratio, which is also suitable for the outlet NO discharge; the linear correlation is also discovered between peak temperature and equivalence ratios; NO emission at the initial temperature of 525 K is 5.64 times,larger than NO emission at the initial temperature of 300 K. Thus, it is preferable to balance the effect of thermal efficiency and environment simultaneously when determining the optimal initial temperature range. The working parameter limits of divergent burner are wider than that of cylindrical one which contributes to reducing the influence of LCM concentration and volume fluctuation on combustion.展开更多
One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the...One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the other hand, hydrogen is one of the main components in some types of gasified biomass and syngas. Therefore, it is vital to investigate the influences of hydrogen fraction in inlet fuel on the cycle performance. In this work, a steady-state simulation of a hybrid tubular SOFC-gas turbine (GT) cycle is first presented with two configurations: system with and without anode exhaust recirculation. Then, the results of the model when fueled by syngas, biofuel, and gasified biomass are analyzed, and significant dependency of system operational parameters on the inlet fuel composition are investigated. The analysis of impacts of hydrogen concentration in the inlet fuel on the performance of a hybrid tubular SOFC and gas turbine cycle was carried out. The simulation results were considered when the system was fueled by pure methane as a reference case. Then, the performance of the hybrid SOFC-GT system when methane was partially replaced by H2 from a concentration of 0% to 95% with an increment of 5% at each step was investigated. The system performance was monitored by investigating parameters like temperature and flow rate of streams in different locations of the cycle; SOFC and system thermal efficiency; SOFC, GT, and cycle net and specific work; air to fuel ratio; as well as air and fuel mass flow rate. The results of the sensitivity analysis demonstrate that hydrogen concentration has significant effects on the system operational parameters, such as efficiency and specific work.展开更多
The free flow on the step surfaces has received much attention for its representative body type,flow structure,water-air two phase flow,cavitation,and many complex issues.The experiments about the time-averaged pressu...The free flow on the step surfaces has received much attention for its representative body type,flow structure,water-air two phase flow,cavitation,and many complex issues.The experiments about the time-averaged pressure and aeration concentration distribution on the step surface show that the vertical plane of steps will inevitably experience negative pressure,which must rely on adequate aeration concentration to avoid cavitation damage.However,the self-aerated flow at the head section has a relatively low aeration concentration,and the concentration of the entire steps decreases with the increasing of weir head,the minimum appears in the vicinity of the corner,and the location is close to the minimum pressure.Thus,it is necessary to set aerator in the upstream end of the step surfaces to avoid cavitation damage.展开更多
The time-dependent variation of airborne particle concentration for different sizes in a test chamber was numerically predicted with drift-flux model. The performance of the drift-flux model for particle transport in ...The time-dependent variation of airborne particle concentration for different sizes in a test chamber was numerically predicted with drift-flux model. The performance of the drift-flux model for particle transport in different kinds of airflow fields was analyzed. The results show the drift-flux model can predict the transport of indoor fine particles reasonably well. When the air flow field varies slowly, the model can predict both the time-dependent variation ratio of the particle concentration and final stable concentration very well, and the difference for particles with different sizes can be also well predicted. When the air flow varies drastically, the accuracy of the model is decreased due to the neglect of the particles’ independent convective terms in the air flow.展开更多
Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Be...Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Beijing city according to similarity theory. The conclusions were as follows.(1) Normalized standard deviations of wind speeds/ui * were plotted as a function only of a local stability parameter. The values under near-neutral conditions were 2.15, 1.61, and 1.19 at 47 m, 2.39, 1.75,and 1.21 at 140 m, and 2.51, 1.77, and 1.30 at 280 m, showing a clear increase with height. The normalized standard deviation of wind components fitted the 1/3 law under unstable stratification conditions and decreased with height under both stable and unstable conditions.(2) The normalized standard deviation of temperature fitted the.1/3 law in the free convection limit, but was quite scattered with different characteristics under near-neutral conditions. The normalized standard deviations of humidity and the CO2 concentration fitted the.1/3 law under unstable conditions, and remained constant under near-neutral and stable stratification. The normalized standard deviation of scalars, i.e., temperature, humidity, and CO2 concentration, all increased with height.(3) Compared with momentum, and the water vapor and CO2 concentrations, the turbulence correlation coefficient for heat was smaller under near-neutral conditions, but larger under both stable and unstable conditions. A dissimilarity between heat, and the water vapor and CO2 concentrations was observed in urban areas. The relative correlation coefficients between heat and each of momentum, humidity, and CO2 concentration(|rwT/ruw|, |rwT/rwc| and |rwT/ruq|) in the lower layers were always larger than in higher layers, except for the relative correlation coefficient between heat and humidity in an unstable stratification. Therefore, the ratio between heat and each of momentum, humidity, and CO2 concentration decreased with height.展开更多
How would typhoon activity over the western North Pacific change for various scenarios of future global warming?Using the model projections of the Coupled Model Intercomparison Project phase 3(CMIP 3)under the SRES A1...How would typhoon activity over the western North Pacific change for various scenarios of future global warming?Using the model projections of the Coupled Model Intercomparison Project phase 3(CMIP 3)under the SRES A1B scenario,we generated summer(September)ice-free Arctic conditions,also referred to as Blue Arctic conditions,and then used the corresponding monthly sea surface temperature(SST)and a set of CO2concentrations to drive an AGCM model to simulate the resulting changes in background conditions affecting typhoon activity over the western North Pacific.Our results show that,during typhoon season(June to October),atmospheric and ocean circulations over the western North Pacific would be significantly different from the present circulations.Changes in the vertical shear of zonal wind and outgoing longwave radiation(OLR)in the western North Pacific are favorable for westward and northward shift,respectively,of the location of typhoon genesis.Moreover,changes in the above fields over the key area may be conducive to less frequent typhoons.In addition,the tropical cyclone genesis potential index(GPI)over the western North Pacific would decrease(increase)east(west)of 150°E(140°E).展开更多
This paper presents formulae and explanation about the growth of a convective gas bubble in the blood and other tissues of divers who surface too quickly, concentration distribution around the growing bubble is also p...This paper presents formulae and explanation about the growth of a convective gas bubble in the blood and other tissues of divers who surface too quickly, concentration distribution around the growing bubble is also presented. The formulae are valid all over the growth stages, i.e. under variable ambient pressure while the diver is ascending, and under constant ambient pressure at diving stops or at sea level. The mathematical model is solved analytically by using the method of combined variables. The growth process is affected by tissue diffusivity, concentration constant and the initial void fraction, which is the dominant parameter. Results show that, the time of the complete growth, in the convective growth model, is shorter than those earlier presented by Mohammadein and Mohamed [Concentration distribution around a growing gas bubble in tissue, Math. Biosci. 225(1) (2010) 11-17] and Srinivasan et al. [Mathematical models of diffusion- limited gas bubble dynamics in tissue, J. Appl. Physiol. 86 (1999) 732-741] for the growth of a stationary gas bubble, this explains the effect of bubble motion on consuming the oversaturated dissolved gas from the tissue into growing bubble which leads to increment in the growth rate to be more than those presented in the previous stationary models.展开更多
基金Science and Technology on Electronic Test and Measurement Laboratory(No.9140C12040515X)
文摘The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.
基金supported by the Key Program of the Coal Joint Funds of the National Natural Science Foundation of China (No.U1261205)the Youth Program of National Natural Science Foundation of China (No.51404147)+2 种基金the Class General Financial Grant from the China Postdoctoral Science Foundation (No.2015M570601)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No.2014RCJJ029)the State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology (No.MDPC2013ZR02)
文摘A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious.
文摘In this study, the oxidation rates of sulfur dioxide (SO2) in sulphuric acid solution by ozone and oxygen were compared, and the oxidation mechanism of ozone on SO2 was investigated. The results showed that the oxidation-reduction potential of the acidic solution was enhanced, the transformation rate of sulfuric acid to sulphuric acid was increased and the absorption driving force was improved in the presence of ozone. By comparing the amount of sulfate ions measured in the experiments and the theoretical amount of sulfate ions calculated from the amount of ozone consumed in the reaction, it can be confirmed that oxygen free radicals from dissociation of ozone are reactive as an efficient oxidant and oxygen from ozone generator participates in the reaction with SO2. 0.602 mol of effective oxygen was introduced into the reaction by one mole of ozone in 10.15 rain at sulphuric acid concentration of 3% (by mass), SO2 concentration of 1.33% (by volume) and oxygen flow rate of 1.5 L.min^-1 from ozone generator.
文摘Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.
文摘Uniformity of air flow in extraction openings in exhaust air channels for manure gas exhaustion is determined by the distribution of pressure. The areas required in extraction vents and in extraction ducts are determined by the uniformity of air flow desired along the duct and by the loss of pressure that can be accepted. The area ratio between the vents and the cross section of the exhaust air duct will have a strong influence on both uniformity of flow and loss of pressure. The following ventilation properties were studied: Uniformity of air flow; Variations in static pressure along a duct; Air velocity at different distances from the vents. The area ratio should be about 1 for uniform exhaustion. The studies showed that the relative variation in air velocity is independent of the level of the ventilation rate. The uniformity of the exhaust distance is influenced in about the same way by the area ratio as the air velocity in the exhaust vents. Thus, it is important that the area ratio is not too high if a good exhaust function should be guaranteed. The studies also demonstrated that the uniformity of the exhaust distance is independent of the ventilation flow rate. The exhaust ventilation range is, maximally 0.3 m from the vents. The static friction coefficient was on average 0.80.
文摘With the aim to find an absorbing liquid suitable for the gas cleaning system in the application of gasification unit in a remote area, three types of oil were tested using a bubble column and a wetted wall column. Air streams containing toluene vapour with flowrates of 13.6 mL-min1 or 27.6 mL.min^-1 were bubbled through a 50 mL static oil in a glass tube at a temperature of 30 ℃ or 60 ℃. In experiments using the wetted wall column, air streams containing toluene were contacted with a falling thin film ofoil on the outer wall of a column with a diameter of 6.4 cm and two different contacting heights of 60 cm or 80 cm. Toluene concentrations in the air stream were adjusted in the range of 700-3000 ppm corresponding to a typical tars concentration in the producer gas. The phase equilibrium of toluene was represented as values of 1/tl of 326, 220 and 182 respectively for lubrication oil, palm oil and sunflower oil (H is Henry's constant with the toluene concentrations in g.L^-1 for liquid phase and g.Nm^-3 for gas phase). From experiments using the bubble column, it was found that the overall mass transfer coefficient (Kc, a) was in the order of 10.3 cm3-min^-1 and the overall liquid phase mass transfer coefficient (KLa)was about 10.3 cm3.min^-1. Although lubrication oil had a slightly better absorption capacity than the other two tested oils, it had a lower mass trasfer coefficient than that of palm oil. All three proposed oils had a much better absorption capacity and absorption rate than that of water used conventionally as a scrubbing liquid in a small biomass gasification plant.
基金Financial support for this work provided by the National"Eleventh Five-Year" Key Scientific and Technological Support[Program (No. 2007BAK22B04)2008 independent task (No.SKLCRSM08B12)
文摘Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire test tunnel. Both experimental measurements and numerical simulations are discussed. The numer- ical analysis was performed with the computational fluid dynamics software package ''FLUENT''. The results show that the experimental data agree with the simulation results. The results verify that Roberts' theory of burning is correct. They also prove that the air velocity is the key factor that determines the type of combustion. Also, it is shown that secondary disasters are unlikely for oxygen rich combustion with a limited fire load.
基金Supported by the Technology Development Program of Jinan City (201102039,201202087)the Technology Development Program of Shandong Province (2011GNC11401)
文摘A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer.
基金the supports by the National Basic Research Program of China (No. 2011CB201205)the National Natural Science Foundation of China (No. 51204169)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (No. 20110095120017)the Fund of China Postdoctoral Science Foundation of China (No. 20110491482)
文摘Low-concentration methane(LCM) has been one of the biggest difficulties in using coal mine methane.And previous studies found that premixed combustion in porous media is an effective method of low calorific gas utilization. This paper studied the combustion of LCM in a divergent porous medium burner(DPMB) by using computational fluid dynamics(CFD), and investigated the effect of gas initial temperature on combustion characteristic, the distribution of temperature and pollutant at different equivalence ratios in detail. Besides, the comparison of divergent and cylindrical burners was also performed in this paper. The results show that: the peak temperature in DPMB increases as the increasing of equivalence ratio, which is also suitable for the outlet NO discharge; the linear correlation is also discovered between peak temperature and equivalence ratios; NO emission at the initial temperature of 525 K is 5.64 times,larger than NO emission at the initial temperature of 300 K. Thus, it is preferable to balance the effect of thermal efficiency and environment simultaneously when determining the optimal initial temperature range. The working parameter limits of divergent burner are wider than that of cylindrical one which contributes to reducing the influence of LCM concentration and volume fluctuation on combustion.
文摘One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the other hand, hydrogen is one of the main components in some types of gasified biomass and syngas. Therefore, it is vital to investigate the influences of hydrogen fraction in inlet fuel on the cycle performance. In this work, a steady-state simulation of a hybrid tubular SOFC-gas turbine (GT) cycle is first presented with two configurations: system with and without anode exhaust recirculation. Then, the results of the model when fueled by syngas, biofuel, and gasified biomass are analyzed, and significant dependency of system operational parameters on the inlet fuel composition are investigated. The analysis of impacts of hydrogen concentration in the inlet fuel on the performance of a hybrid tubular SOFC and gas turbine cycle was carried out. The simulation results were considered when the system was fueled by pure methane as a reference case. Then, the performance of the hybrid SOFC-GT system when methane was partially replaced by H2 from a concentration of 0% to 95% with an increment of 5% at each step was investigated. The system performance was monitored by investigating parameters like temperature and flow rate of streams in different locations of the cycle; SOFC and system thermal efficiency; SOFC, GT, and cycle net and specific work; air to fuel ratio; as well as air and fuel mass flow rate. The results of the sensitivity analysis demonstrate that hydrogen concentration has significant effects on the system operational parameters, such as efficiency and specific work.
基金The National Basic Research Program of China("973"Project)(Grant No.2013CB035905)The National Natural Science Foundation of China(Grant No.51179114)
文摘The free flow on the step surfaces has received much attention for its representative body type,flow structure,water-air two phase flow,cavitation,and many complex issues.The experiments about the time-averaged pressure and aeration concentration distribution on the step surface show that the vertical plane of steps will inevitably experience negative pressure,which must rely on adequate aeration concentration to avoid cavitation damage.However,the self-aerated flow at the head section has a relatively low aeration concentration,and the concentration of the entire steps decreases with the increasing of weir head,the minimum appears in the vicinity of the corner,and the location is close to the minimum pressure.Thus,it is necessary to set aerator in the upstream end of the step surfaces to avoid cavitation damage.
基金the financial support of National Natural Science Foundation of China (NSFC,No: 10502044, 10772162)the major projects on control and rectification of water body pollution (No. 2009ZX07424-001) the Natural Science Foundationof Zhejiang Province (ZJNSF, No: Z107332)
文摘The time-dependent variation of airborne particle concentration for different sizes in a test chamber was numerically predicted with drift-flux model. The performance of the drift-flux model for particle transport in different kinds of airflow fields was analyzed. The results show the drift-flux model can predict the transport of indoor fine particles reasonably well. When the air flow field varies slowly, the model can predict both the time-dependent variation ratio of the particle concentration and final stable concentration very well, and the difference for particles with different sizes can be also well predicted. When the air flow varies drastically, the accuracy of the model is decreased due to the neglect of the particles’ independent convective terms in the air flow.
基金supported by the National Nature Science Foundation of China (Grant Nos. 41275023, 91537212 & 410210040)
文摘Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Beijing city according to similarity theory. The conclusions were as follows.(1) Normalized standard deviations of wind speeds/ui * were plotted as a function only of a local stability parameter. The values under near-neutral conditions were 2.15, 1.61, and 1.19 at 47 m, 2.39, 1.75,and 1.21 at 140 m, and 2.51, 1.77, and 1.30 at 280 m, showing a clear increase with height. The normalized standard deviation of wind components fitted the 1/3 law under unstable stratification conditions and decreased with height under both stable and unstable conditions.(2) The normalized standard deviation of temperature fitted the.1/3 law in the free convection limit, but was quite scattered with different characteristics under near-neutral conditions. The normalized standard deviations of humidity and the CO2 concentration fitted the.1/3 law under unstable conditions, and remained constant under near-neutral and stable stratification. The normalized standard deviation of scalars, i.e., temperature, humidity, and CO2 concentration, all increased with height.(3) Compared with momentum, and the water vapor and CO2 concentrations, the turbulence correlation coefficient for heat was smaller under near-neutral conditions, but larger under both stable and unstable conditions. A dissimilarity between heat, and the water vapor and CO2 concentrations was observed in urban areas. The relative correlation coefficients between heat and each of momentum, humidity, and CO2 concentration(|rwT/ruw|, |rwT/rwc| and |rwT/ruq|) in the lower layers were always larger than in higher layers, except for the relative correlation coefficient between heat and humidity in an unstable stratification. Therefore, the ratio between heat and each of momentum, humidity, and CO2 concentration decreased with height.
基金supported by the National Basic Research Program of China (Grant No. 2012CB955401)the National Natural Science Foundation of China (Grant No. 41130103)Norwegian Research Council project "East-Asia DecCen"
文摘How would typhoon activity over the western North Pacific change for various scenarios of future global warming?Using the model projections of the Coupled Model Intercomparison Project phase 3(CMIP 3)under the SRES A1B scenario,we generated summer(September)ice-free Arctic conditions,also referred to as Blue Arctic conditions,and then used the corresponding monthly sea surface temperature(SST)and a set of CO2concentrations to drive an AGCM model to simulate the resulting changes in background conditions affecting typhoon activity over the western North Pacific.Our results show that,during typhoon season(June to October),atmospheric and ocean circulations over the western North Pacific would be significantly different from the present circulations.Changes in the vertical shear of zonal wind and outgoing longwave radiation(OLR)in the western North Pacific are favorable for westward and northward shift,respectively,of the location of typhoon genesis.Moreover,changes in the above fields over the key area may be conducive to less frequent typhoons.In addition,the tropical cyclone genesis potential index(GPI)over the western North Pacific would decrease(increase)east(west)of 150°E(140°E).
文摘This paper presents formulae and explanation about the growth of a convective gas bubble in the blood and other tissues of divers who surface too quickly, concentration distribution around the growing bubble is also presented. The formulae are valid all over the growth stages, i.e. under variable ambient pressure while the diver is ascending, and under constant ambient pressure at diving stops or at sea level. The mathematical model is solved analytically by using the method of combined variables. The growth process is affected by tissue diffusivity, concentration constant and the initial void fraction, which is the dominant parameter. Results show that, the time of the complete growth, in the convective growth model, is shorter than those earlier presented by Mohammadein and Mohamed [Concentration distribution around a growing gas bubble in tissue, Math. Biosci. 225(1) (2010) 11-17] and Srinivasan et al. [Mathematical models of diffusion- limited gas bubble dynamics in tissue, J. Appl. Physiol. 86 (1999) 732-741] for the growth of a stationary gas bubble, this explains the effect of bubble motion on consuming the oversaturated dissolved gas from the tissue into growing bubble which leads to increment in the growth rate to be more than those presented in the previous stationary models.