The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing sim...The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geo-physical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950-2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40?N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.展开更多
The current paper introduces an empirical method for estimating the vertical distribution of background stratospheric aerosol extinction profiles covering the latitude bands of 50±5°N,40±5°N,30...The current paper introduces an empirical method for estimating the vertical distribution of background stratospheric aerosol extinction profiles covering the latitude bands of 50±5°N,40±5°N,30±5°N,and 20±5°N and the longitude range of 75 135°E based on Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction measurements at wavelengths of 1020 nm,525 nm,452 nm,and 386 nm for the volcanically calm years between 1998 2004.With this method,the vertical distribution of stratospheric aerosol extinction coefficients can be estimated according to latitude and wavelength.Comparisons of the empirically calculated aerosol extinction profiles and the SAGE II aerosol measurements show that the empirically calculated aerosol extinction coefficients are consistent with SAGE II values,with relative differences within 10% from 2 km above the tropopause to 33 km,and within 22% from 33 km to 35 km.The empirically calculated aerosol stratospheric optical depths (vertically integrated aerosol extinction coefficient) at the four wavelengths are also consistent with the corresponding SAGE II optical depth measurements,with differences within 2.2% in the altitude range from 2 km above the tropopause to 35 km.展开更多
Stratospheric aerosol extinction profiles are retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb scatter measurements.In the process of retrieval,the SCIATRAN radiative...Stratospheric aerosol extinction profiles are retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb scatter measurements.In the process of retrieval,the SCIATRAN radiative transfer model is used to simulate the limb scattering radiation received by the SCIAMACHY instrument,and an optimal estimation algorithm is used to calculate the aerosol extinction profiles.Sensitivity analyses are performed to investigate the impact of the surface albedo on the accuracy of the retrieved aerosol extinction profiles in the northern midlatitudes.It is found that the errors resulting from the bias of the assumed surface albedo in the retrieval are generally below 6%.The retrieved SCIAMACHY aerosol extinction profiles are compared with corresponding Stratospheric Aerosol and Gas Experiment(SAGE) II measurements,and the results indicate that for the zonal mean profiles,the SCIAMACHY retrievals show good agreement with SAGE II measurements,with the absolute differences being less than 2.3×10-5 km-1 from 14–25 km,and less than 5.9×10-6 km-1 from 25–35 km;and the relative differences being within 20% over the latitude range of 14–35 km.展开更多
Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb observation data are used to retrieve stratospheric aerosol extinction profiles. The retrieved aerosol profiles are compared with ...Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb observation data are used to retrieve stratospheric aerosol extinction profiles. The retrieved aerosol profiles are compared with Stratospheric Aerosol and Gas Experiment(SAGE) Ⅱ aerosol data records. The comparisons are made over the period 2003–2004. The results show that the SCIAMACHY aerosol profile retrievals exhibit general agreement with the coincident SAGE Ⅱ data records. In the 15–35 km altitude range, the percentage differences between the SCIAMACHY-retrieved and SAGE Ⅱ–measured zonal mean aerosol extinction profiles are less than 20% for the 20–30°N and 30–40°N latitude zones, and less than 25% for the 40–50°N zone. The stratospheric aerosol optical depths in this altitude range calculated from SCIAMACHY retrievals are in good agreement with SAGE Ⅱ measurements, with present differences less than 6% for the three latitude zones. The aerosol retrievals from SCIAMACHY observations are combined with the SAGE Ⅱ aerosol data records, form a long-term data-set for the period 2000–2010. Using the combined SAGE Ⅱ and SCIAMACHY dataset, the variation trends of the stratospheric aerosol layer over East Asia(20–50°N, 70–150°E) are analyzed. The results indicate that the stratospheric aerosols have a significant trend of increase over East Asia during 2000–2010. The stratospheric aerosol optical depths increase by about 5% per year over the 11-yr period. The increase in stratospheric aerosols is found to be obviously related to moderate volcanic eruptions.展开更多
This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) em...This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) emissions inventories and a fully coupled chemistry-aerosol general circulation model. As compared to the previous Global Emissions Inventory Activity (GEIA) data, that have been commonly used for forcing estimates since 1990, the IPCC AR5 emissions inventories report lower anthropogenic emissions of organic carbon and black carbon aerosols and higher sulfur and NOx emissions. The simulated global and annual mean burdens of sulfate, nitrate, black carbon (BC), primary organic aerosol (POA), secondary organic aerosol (SOA), and ozone were 0.79, 0.35, 0.05, 0.49, 0.34, and 269 Tg, respectively, in the year 1850, and 1.90, 0.90, 0.11, 0.71, 0.32, and 377 Tg, respectively, in the year 2000. The estimated annual mean top of the atmosphere (TOA) direct radiative forcing of all anthropogenic aerosols based on the AR5 emissions inventories is -0.60 W m^-2 on a global mean basis from 1850 to 2000. However, this is -2.40 W m-2 when forcing values are averaged over eastern China (18-45°N and 95-125°E). The value for tropospheric ozone is 0.17 W m^-1 on a global mean basis and 0.24 W m^-2 over eastern China. Forcing values indicate that the climatic effect of aerosols over eastern China is much more significant than the globally averaged effect.展开更多
Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured fo...Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured formations where the operator may face total loss with no mud return in the annular. The voids or large fracture encountered in this case are often far too large to be plugged with conventional Lost Circulation Material. This paper will give a detailed introduction on a novel composite gel material usable to control severe losses and pressurization sealing. The plugging mechanics of this new composite gel material, which is different from conventional lost circulation materials, were elaborated as well. In addition, the properties of the new composite gel material such as thermostability, sealing strength and bearing resistance are characterized with specific experimental devices. The experimental results proved that the breakdown pressure of the new plugging reached more than 20MPa, and the maximum degraded temperature can be exceed 130℃. The field application at 4 wells in Puguang gas field, SINOPEC, demonstrated that the new composite gel material solved the serious loss in Ordovician carbonate fractured formation successfully and guaranteed the following completion cement operation smoothly. The composite gel sealing slurries, which was easily prepared on site, gives remarkable properties regarding pumping through drill pipes, adjustment of setting time and excellent sealing strength of the lost zone sealing, additionally, the whole pressurization sealing process was complicated within only ten hours. The on-site results show that the plugging ratio of the new composite gel was reached 100%, and the success rate of sealing operation kept above 80%.Thus the new LCM can guarantee safe drilling jobs and save operation cost more effectively.展开更多
This paper presents an empirical model for estimating the zonal mean aerosol extinction profiles in the stratosphere over 10°-wide latitude bands between 60°S and 60°N, on the basis of Stratospheric Aer...This paper presents an empirical model for estimating the zonal mean aerosol extinction profiles in the stratosphere over 10°-wide latitude bands between 60°S and 60°N, on the basis of Stratospheric Aerosol and Gas Experiment(SAGE) II aerosol extinction measurements at 1.02, 0.525, and 0.452 μm during the volcanically quiescent period between 1998–2004. First, an empirical model is developed for calculating the stratospheric aerosol extinction profiles at 1.02 μm. Then, starting from the 1.02 μm extinction profile and an exponential spectral dependence, an empirical algorithm is developed that allows the aerosol extinction profiles at other wavelengths to be calculated. Comparisons of the model-calculated aerosol extinction profiles at the wavelengths of 1.02, 0.525, and 0.452 μm and the SAGE II measurements show that the model-calculated aerosol extinction coefficients conform well with the SAGE II values, with the relative differences generally being within 15% from 2 km above the tropopause to 40 km. The model-calculated stratospheric aerosol optical depths at the three wavelengths are also in good agreement with the corresponding optical depths derived from the SAGE II measurements, with the relative differences being within 0.9% for all latitude bands. This paper provides a useful tool in simulating zonal mean aerosol extinction profiles, which can be used as representative background stratospheric aerosols in view of atmospheric modeling and remote sensing retrievals.展开更多
The Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction profiles at 1020 nm were used to study the distribution characteristics of stratospheric aerosols during the volcanically quiescent period of...The Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction profiles at 1020 nm were used to study the distribution characteristics of stratospheric aerosols during the volcanically quiescent period of 1998-2004. The stratospheric aerosol distributions exhibited hemispheric asymmetry between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In the lower stratosphere below 20 km, the zonal averaged aerosol optical depths in the NH were higher than those of the corresponding SH; whereas at higher altitudes above 20 km, the optical depths in the SH-- except the equatorial region--were higher than those of the NH. At 0-10°N and 10-20°N, the stratospheric aerosol optical depth (SAOD) exhibited larger values in boreal winter and lower values in the spring and summer; at 0-10°S and 10-20°S, the SAOD presented small seasonal variations. At 30-40°N, the SAOD presented larger values in the boreal fall and winter and lower values in the spring and summer; while at 30-40°S, the SAOD exhibited larger values in the austral winter and early spring and lower values in the summer and fall. These characteristics can mainly be attributed to the seasonal cycle of the dynamic transport, and the effects of the buildup and breakdown of the polar vortex. At 50-60°S, the SAOD exhibited extremely high values during austral winter associated with the Antarctic polar vortex boundary; at 50-60°N, the SAOD also exhibited larger values during the boreal winter, but it was much less obvious than that of its southern counterpart.展开更多
Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The d...Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.展开更多
基金supported by the National Basic Research Program of China(2012CB955602)National Key Program for Developing Basic Science(2010CB428904)Natural Science Foundation of China(41176006 and 40921004)
文摘The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geo-physical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950-2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40?N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.
基金supported by the National Basic Research Program of China(Grant No.2011CB403401)the National Natural Science Foundation of China(Grant No.40875084)
文摘The current paper introduces an empirical method for estimating the vertical distribution of background stratospheric aerosol extinction profiles covering the latitude bands of 50±5°N,40±5°N,30±5°N,and 20±5°N and the longitude range of 75 135°E based on Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction measurements at wavelengths of 1020 nm,525 nm,452 nm,and 386 nm for the volcanically calm years between 1998 2004.With this method,the vertical distribution of stratospheric aerosol extinction coefficients can be estimated according to latitude and wavelength.Comparisons of the empirically calculated aerosol extinction profiles and the SAGE II aerosol measurements show that the empirically calculated aerosol extinction coefficients are consistent with SAGE II values,with relative differences within 10% from 2 km above the tropopause to 33 km,and within 22% from 33 km to 35 km.The empirically calculated aerosol stratospheric optical depths (vertically integrated aerosol extinction coefficient) at the four wavelengths are also consistent with the corresponding SAGE II optical depth measurements,with differences within 2.2% in the altitude range from 2 km above the tropopause to 35 km.
基金funded by the National Natural Science Foundation of China (Grant No.41275047)the National Basic Research Program of China (Grant No.2013CB955801)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA05100300)
文摘Stratospheric aerosol extinction profiles are retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb scatter measurements.In the process of retrieval,the SCIATRAN radiative transfer model is used to simulate the limb scattering radiation received by the SCIAMACHY instrument,and an optimal estimation algorithm is used to calculate the aerosol extinction profiles.Sensitivity analyses are performed to investigate the impact of the surface albedo on the accuracy of the retrieved aerosol extinction profiles in the northern midlatitudes.It is found that the errors resulting from the bias of the assumed surface albedo in the retrieval are generally below 6%.The retrieved SCIAMACHY aerosol extinction profiles are compared with corresponding Stratospheric Aerosol and Gas Experiment(SAGE) II measurements,and the results indicate that for the zonal mean profiles,the SCIAMACHY retrievals show good agreement with SAGE II measurements,with the absolute differences being less than 2.3×10-5 km-1 from 14–25 km,and less than 5.9×10-6 km-1 from 25–35 km;and the relative differences being within 20% over the latitude range of 14–35 km.
基金funded by the National Natural Science Foundation of China[grant number 41275047],[grant number41675032],[grant number 41575034]
文摘Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb observation data are used to retrieve stratospheric aerosol extinction profiles. The retrieved aerosol profiles are compared with Stratospheric Aerosol and Gas Experiment(SAGE) Ⅱ aerosol data records. The comparisons are made over the period 2003–2004. The results show that the SCIAMACHY aerosol profile retrievals exhibit general agreement with the coincident SAGE Ⅱ data records. In the 15–35 km altitude range, the percentage differences between the SCIAMACHY-retrieved and SAGE Ⅱ–measured zonal mean aerosol extinction profiles are less than 20% for the 20–30°N and 30–40°N latitude zones, and less than 25% for the 40–50°N zone. The stratospheric aerosol optical depths in this altitude range calculated from SCIAMACHY retrievals are in good agreement with SAGE Ⅱ measurements, with present differences less than 6% for the three latitude zones. The aerosol retrievals from SCIAMACHY observations are combined with the SAGE Ⅱ aerosol data records, form a long-term data-set for the period 2000–2010. Using the combined SAGE Ⅱ and SCIAMACHY dataset, the variation trends of the stratospheric aerosol layer over East Asia(20–50°N, 70–150°E) are analyzed. The results indicate that the stratospheric aerosols have a significant trend of increase over East Asia during 2000–2010. The stratospheric aerosol optical depths increase by about 5% per year over the 11-yr period. The increase in stratospheric aerosols is found to be obviously related to moderate volcanic eruptions.
基金supported by the National Natural Science Foundation of China (Grant Nos.90711004 and40825016)the Chinese Academy of Sciences (Grant Nos.KZCX2-YW-Q1 and KZCX2-YW-Q11-03)
文摘This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) emissions inventories and a fully coupled chemistry-aerosol general circulation model. As compared to the previous Global Emissions Inventory Activity (GEIA) data, that have been commonly used for forcing estimates since 1990, the IPCC AR5 emissions inventories report lower anthropogenic emissions of organic carbon and black carbon aerosols and higher sulfur and NOx emissions. The simulated global and annual mean burdens of sulfate, nitrate, black carbon (BC), primary organic aerosol (POA), secondary organic aerosol (SOA), and ozone were 0.79, 0.35, 0.05, 0.49, 0.34, and 269 Tg, respectively, in the year 1850, and 1.90, 0.90, 0.11, 0.71, 0.32, and 377 Tg, respectively, in the year 2000. The estimated annual mean top of the atmosphere (TOA) direct radiative forcing of all anthropogenic aerosols based on the AR5 emissions inventories is -0.60 W m^-2 on a global mean basis from 1850 to 2000. However, this is -2.40 W m-2 when forcing values are averaged over eastern China (18-45°N and 95-125°E). The value for tropospheric ozone is 0.17 W m^-1 on a global mean basis and 0.24 W m^-2 over eastern China. Forcing values indicate that the climatic effect of aerosols over eastern China is much more significant than the globally averaged effect.
文摘Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured formations where the operator may face total loss with no mud return in the annular. The voids or large fracture encountered in this case are often far too large to be plugged with conventional Lost Circulation Material. This paper will give a detailed introduction on a novel composite gel material usable to control severe losses and pressurization sealing. The plugging mechanics of this new composite gel material, which is different from conventional lost circulation materials, were elaborated as well. In addition, the properties of the new composite gel material such as thermostability, sealing strength and bearing resistance are characterized with specific experimental devices. The experimental results proved that the breakdown pressure of the new plugging reached more than 20MPa, and the maximum degraded temperature can be exceed 130℃. The field application at 4 wells in Puguang gas field, SINOPEC, demonstrated that the new composite gel material solved the serious loss in Ordovician carbonate fractured formation successfully and guaranteed the following completion cement operation smoothly. The composite gel sealing slurries, which was easily prepared on site, gives remarkable properties regarding pumping through drill pipes, adjustment of setting time and excellent sealing strength of the lost zone sealing, additionally, the whole pressurization sealing process was complicated within only ten hours. The on-site results show that the plugging ratio of the new composite gel was reached 100%, and the success rate of sealing operation kept above 80%.Thus the new LCM can guarantee safe drilling jobs and save operation cost more effectively.
基金supported by the National Natural Science Foundation of China (Grant No. 41275047)the National Basic Research Program of China (Grant No. 2013CB955801)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100300)
文摘This paper presents an empirical model for estimating the zonal mean aerosol extinction profiles in the stratosphere over 10°-wide latitude bands between 60°S and 60°N, on the basis of Stratospheric Aerosol and Gas Experiment(SAGE) II aerosol extinction measurements at 1.02, 0.525, and 0.452 μm during the volcanically quiescent period between 1998–2004. First, an empirical model is developed for calculating the stratospheric aerosol extinction profiles at 1.02 μm. Then, starting from the 1.02 μm extinction profile and an exponential spectral dependence, an empirical algorithm is developed that allows the aerosol extinction profiles at other wavelengths to be calculated. Comparisons of the model-calculated aerosol extinction profiles at the wavelengths of 1.02, 0.525, and 0.452 μm and the SAGE II measurements show that the model-calculated aerosol extinction coefficients conform well with the SAGE II values, with the relative differences generally being within 15% from 2 km above the tropopause to 40 km. The model-calculated stratospheric aerosol optical depths at the three wavelengths are also in good agreement with the corresponding optical depths derived from the SAGE II measurements, with the relative differences being within 0.9% for all latitude bands. This paper provides a useful tool in simulating zonal mean aerosol extinction profiles, which can be used as representative background stratospheric aerosols in view of atmospheric modeling and remote sensing retrievals.
基金supported by the National Basic Research Program of China (Grant No. 2013CB955801)the National Natural Science Foundation of China (Grant No. 41275047)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100300)
文摘The Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction profiles at 1020 nm were used to study the distribution characteristics of stratospheric aerosols during the volcanically quiescent period of 1998-2004. The stratospheric aerosol distributions exhibited hemispheric asymmetry between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In the lower stratosphere below 20 km, the zonal averaged aerosol optical depths in the NH were higher than those of the corresponding SH; whereas at higher altitudes above 20 km, the optical depths in the SH-- except the equatorial region--were higher than those of the NH. At 0-10°N and 10-20°N, the stratospheric aerosol optical depth (SAOD) exhibited larger values in boreal winter and lower values in the spring and summer; at 0-10°S and 10-20°S, the SAOD presented small seasonal variations. At 30-40°N, the SAOD presented larger values in the boreal fall and winter and lower values in the spring and summer; while at 30-40°S, the SAOD exhibited larger values in the austral winter and early spring and lower values in the summer and fall. These characteristics can mainly be attributed to the seasonal cycle of the dynamic transport, and the effects of the buildup and breakdown of the polar vortex. At 50-60°S, the SAOD exhibited extremely high values during austral winter associated with the Antarctic polar vortex boundary; at 50-60°N, the SAOD also exhibited larger values during the boreal winter, but it was much less obvious than that of its southern counterpart.
文摘Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.