Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impac...Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.展开更多
In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were develop...In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m) and a large area(with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results accord well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.展开更多
基金Project(2011ZX05000-026-004) supported by the National Science & Technology Specific Program of ChinaProject(2010D-5006-0604) supported by the China National Petroleum Corporation (CNPC) Innovation FoundationProject(51004167) supported by the National Natural Science Foundation of China
文摘Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.
基金Project(50808083) supported by the National Natural Science Foundation of China
文摘In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m) and a large area(with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results accord well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.